Accurate staging of chick embryonic tissues via deep learning of salient features
Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investi...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2023-11, Vol.150 (22) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Development (Cambridge) |
container_volume | 150 |
creator | Groves, Ian Holmshaw, Jacob Furley, David Manning, Elizabeth Chinnaiya, Kavitha Towers, Matthew Evans, Benjamin D. Placzek, Marysia Fletcher, Alexander G. |
description | Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data. |
doi_str_mv | 10.1242/dev.202068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877388926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877388926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-f63fbc388bda2499f03d4d0e42e38b6860c5703af7d42da0ce8efcd1d8d9a9943</originalsourceid><addsrcrecordid>eNotkF1LwzAYRoMoOKc3_oJcitD5Juma5HIMv2Aggl6XNHkzo11bk3Swf29lu3puDoeHQ8gtgwXjJX9wuF9w4FCpMzJjpZSFZlyfkxnoJRRMa3ZJrlL6BgBRSTkj7ytrx2gy0pTNNnRb2ntqv4L9obhr4qHvgqU5pDRiovtgqEMcaIsmdic4mTZgl6lHk8eI6ZpceNMmvDntnHw-PX6sX4rN2_PrerUprADIha-Eb6xQqnGGl1p7EK50gCVHoZpKVWCXEoTx0pXcGbCo0FvHnHLaaF2KObk7eofY_07vcr0LyWLbmg77MdVcSTnpNa8m9P6I2tinFNHXQww7Ew81g_q_Wz11q4_dxB8sgmGy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877388926</pqid></control><display><type>article</type><title>Accurate staging of chick embryonic tissues via deep learning of salient features</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Groves, Ian ; Holmshaw, Jacob ; Furley, David ; Manning, Elizabeth ; Chinnaiya, Kavitha ; Towers, Matthew ; Evans, Benjamin D. ; Placzek, Marysia ; Fletcher, Alexander G.</creator><creatorcontrib>Groves, Ian ; Holmshaw, Jacob ; Furley, David ; Manning, Elizabeth ; Chinnaiya, Kavitha ; Towers, Matthew ; Evans, Benjamin D. ; Placzek, Marysia ; Fletcher, Alexander G.</creatorcontrib><description>Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.202068</identifier><language>eng</language><ispartof>Development (Cambridge), 2023-11, Vol.150 (22)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-f63fbc388bda2499f03d4d0e42e38b6860c5703af7d42da0ce8efcd1d8d9a9943</citedby><cites>FETCH-LOGICAL-c300t-f63fbc388bda2499f03d4d0e42e38b6860c5703af7d42da0ce8efcd1d8d9a9943</cites><orcidid>0000-0002-4106-9229 ; 0000-0002-0760-1795 ; 0000-0001-6317-8226 ; 0000-0002-1734-6070 ; 0000-0003-0525-4336 ; 0000-0002-1372-381X ; 0000-0003-2189-4536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3678,27924,27925</link.rule.ids></links><search><creatorcontrib>Groves, Ian</creatorcontrib><creatorcontrib>Holmshaw, Jacob</creatorcontrib><creatorcontrib>Furley, David</creatorcontrib><creatorcontrib>Manning, Elizabeth</creatorcontrib><creatorcontrib>Chinnaiya, Kavitha</creatorcontrib><creatorcontrib>Towers, Matthew</creatorcontrib><creatorcontrib>Evans, Benjamin D.</creatorcontrib><creatorcontrib>Placzek, Marysia</creatorcontrib><creatorcontrib>Fletcher, Alexander G.</creatorcontrib><title>Accurate staging of chick embryonic tissues via deep learning of salient features</title><title>Development (Cambridge)</title><description>Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data.</description><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAYRoMoOKc3_oJcitD5Juma5HIMv2Aggl6XNHkzo11bk3Swf29lu3puDoeHQ8gtgwXjJX9wuF9w4FCpMzJjpZSFZlyfkxnoJRRMa3ZJrlL6BgBRSTkj7ytrx2gy0pTNNnRb2ntqv4L9obhr4qHvgqU5pDRiovtgqEMcaIsmdic4mTZgl6lHk8eI6ZpceNMmvDntnHw-PX6sX4rN2_PrerUprADIha-Eb6xQqnGGl1p7EK50gCVHoZpKVWCXEoTx0pXcGbCo0FvHnHLaaF2KObk7eofY_07vcr0LyWLbmg77MdVcSTnpNa8m9P6I2tinFNHXQww7Ew81g_q_Wz11q4_dxB8sgmGy</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Groves, Ian</creator><creator>Holmshaw, Jacob</creator><creator>Furley, David</creator><creator>Manning, Elizabeth</creator><creator>Chinnaiya, Kavitha</creator><creator>Towers, Matthew</creator><creator>Evans, Benjamin D.</creator><creator>Placzek, Marysia</creator><creator>Fletcher, Alexander G.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4106-9229</orcidid><orcidid>https://orcid.org/0000-0002-0760-1795</orcidid><orcidid>https://orcid.org/0000-0001-6317-8226</orcidid><orcidid>https://orcid.org/0000-0002-1734-6070</orcidid><orcidid>https://orcid.org/0000-0003-0525-4336</orcidid><orcidid>https://orcid.org/0000-0002-1372-381X</orcidid><orcidid>https://orcid.org/0000-0003-2189-4536</orcidid></search><sort><creationdate>20231115</creationdate><title>Accurate staging of chick embryonic tissues via deep learning of salient features</title><author>Groves, Ian ; Holmshaw, Jacob ; Furley, David ; Manning, Elizabeth ; Chinnaiya, Kavitha ; Towers, Matthew ; Evans, Benjamin D. ; Placzek, Marysia ; Fletcher, Alexander G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-f63fbc388bda2499f03d4d0e42e38b6860c5703af7d42da0ce8efcd1d8d9a9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groves, Ian</creatorcontrib><creatorcontrib>Holmshaw, Jacob</creatorcontrib><creatorcontrib>Furley, David</creatorcontrib><creatorcontrib>Manning, Elizabeth</creatorcontrib><creatorcontrib>Chinnaiya, Kavitha</creatorcontrib><creatorcontrib>Towers, Matthew</creatorcontrib><creatorcontrib>Evans, Benjamin D.</creatorcontrib><creatorcontrib>Placzek, Marysia</creatorcontrib><creatorcontrib>Fletcher, Alexander G.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groves, Ian</au><au>Holmshaw, Jacob</au><au>Furley, David</au><au>Manning, Elizabeth</au><au>Chinnaiya, Kavitha</au><au>Towers, Matthew</au><au>Evans, Benjamin D.</au><au>Placzek, Marysia</au><au>Fletcher, Alexander G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate staging of chick embryonic tissues via deep learning of salient features</atitle><jtitle>Development (Cambridge)</jtitle><date>2023-11-15</date><risdate>2023</risdate><volume>150</volume><issue>22</issue><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Recent work shows that the developmental potential of progenitor cells in the HH10 chick brain changes rapidly, accompanied by subtle changes in morphology. This demands increased temporal resolution for studies of the brain at this stage, necessitating precise and unbiased staging. Here, we investigated whether we could train a deep convolutional neural network to sub-stage HH10 chick brains using a small dataset of 151 expertly labelled images. By augmenting our images with biologically informed transformations and data-driven preprocessing steps, we successfully trained a classifier to sub-stage HH10 brains to 87.1% test accuracy. To determine whether our classifier could be generally applied, we re-trained it using images (269) of randomised control and experimental chick wings, and obtained similarly high test accuracy (86.1%). Saliency analyses revealed that biologically relevant features are used for classification. Our strategy enables training of image classifiers for various applications in developmental biology with limited microscopy data.</abstract><doi>10.1242/dev.202068</doi><orcidid>https://orcid.org/0000-0002-4106-9229</orcidid><orcidid>https://orcid.org/0000-0002-0760-1795</orcidid><orcidid>https://orcid.org/0000-0001-6317-8226</orcidid><orcidid>https://orcid.org/0000-0002-1734-6070</orcidid><orcidid>https://orcid.org/0000-0003-0525-4336</orcidid><orcidid>https://orcid.org/0000-0002-1372-381X</orcidid><orcidid>https://orcid.org/0000-0003-2189-4536</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2023-11, Vol.150 (22) |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_proquest_miscellaneous_2877388926 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
title | Accurate staging of chick embryonic tissues via deep learning of salient features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20staging%20of%20chick%20embryonic%20tissues%20via%20deep%20learning%20of%20salient%20features&rft.jtitle=Development%20(Cambridge)&rft.au=Groves,%20Ian&rft.date=2023-11-15&rft.volume=150&rft.issue=22&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.202068&rft_dat=%3Cproquest_cross%3E2877388926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877388926&rft_id=info:pmid/&rfr_iscdi=true |