Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”

Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-10, Vol.95 (42), p.15690-15699
Hauptverfasser: Yu, Meng, Ye, Rongkai, Zeng, Tao, Tan, Li, Zhao, Ziyu, Gao, Wenjing, Chen, Xin, Lian, Ziqi, Ma, Ying, Li, Aiqing, Hu, Jianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15699
container_issue 42
container_start_page 15690
container_title Analytical chemistry (Washington)
container_volume 95
creator Yu, Meng
Ye, Rongkai
Zeng, Tao
Tan, Li
Zhao, Ziyu
Gao, Wenjing
Chen, Xin
Lian, Ziqi
Ma, Ying
Li, Aiqing
Hu, Jianqiang
description Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel “probe”, which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant K D between reactants, which can be promoted by ∼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between −COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of −COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.
doi_str_mv 10.1021/acs.analchem.3c02955
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877387543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877387543</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-226dfe8d0f293671fae740244d409e3ead360c03cbfc1cf74be7dd865e456d023</originalsourceid><addsrcrecordid>eNp9kbtuFDEUhi0EEkvgDSgs0dDMcmzPbctocwFpCRHKSnSjM_ZxdiKPvdgzRbq8B_ByeRK82kBBQWVZ_v7v6Phn7K2ApQApPqBOS_To9I7GpdIgV1X1jC1EJaGo21Y-ZwsAUIVsAF6yVyndAQgBol6wH-vg0xRnPQ3-lqPnWzdFLL7ifjD8Cn3QwdvB00h-Ks79Dr0mwy_cHCIlTfnG127wg0bHz2ii7AmeXzucbIgj7-_5Nh3Mn1HvsoZvCKM_jjL8ZvbYO-JnV6f8G8VwS44_Pvy8jqGnx4dfr9kLiy7Rm6fzhG0vzm_WH4vNl8tP69NNgapSUyFlbSy1BqxcqboRFqkpQZalKWFFitCoGjQo3VsttG3Knhpj2rqisqoNSHXC3h-9-xi-z5Smbhzybs6hpzCnTrZNo9qmKlVG3_2D3oU55q8_UG1Vyzy2zVR5pHQMKUWy3T4OI8b7TkB3aKzLjXV_GuueGssxOMYOr3-9_438BomLoRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885622448</pqid></control><display><type>article</type><title>Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”</title><source>ACS Publications</source><creator>Yu, Meng ; Ye, Rongkai ; Zeng, Tao ; Tan, Li ; Zhao, Ziyu ; Gao, Wenjing ; Chen, Xin ; Lian, Ziqi ; Ma, Ying ; Li, Aiqing ; Hu, Jianqiang</creator><creatorcontrib>Yu, Meng ; Ye, Rongkai ; Zeng, Tao ; Tan, Li ; Zhao, Ziyu ; Gao, Wenjing ; Chen, Xin ; Lian, Ziqi ; Ma, Ying ; Li, Aiqing ; Hu, Jianqiang</creatorcontrib><description>Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel “probe”, which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant K D between reactants, which can be promoted by ∼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between −COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of −COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c02955</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Aptamers ; Biomarkers ; Biosensors ; Deoxyribonucleic acid ; DNA ; Fluorescence ; Gelatinase ; Gene sequencing ; Ions ; Learning algorithms ; Leukocytes (neutrophilic) ; Lipocalin ; Machine learning ; Mass transfer ; Nucleotide sequence ; Quantum dots ; Urine ; Xerogels</subject><ispartof>Analytical chemistry (Washington), 2023-10, Vol.95 (42), p.15690-15699</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 24, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-226dfe8d0f293671fae740244d409e3ead360c03cbfc1cf74be7dd865e456d023</citedby><cites>FETCH-LOGICAL-a353t-226dfe8d0f293671fae740244d409e3ead360c03cbfc1cf74be7dd865e456d023</cites><orcidid>0000-0001-7706-4377 ; 0000-0003-2204-0663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c02955$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c02955$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Yu, Meng</creatorcontrib><creatorcontrib>Ye, Rongkai</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Zhao, Ziyu</creatorcontrib><creatorcontrib>Gao, Wenjing</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Lian, Ziqi</creatorcontrib><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Li, Aiqing</creatorcontrib><creatorcontrib>Hu, Jianqiang</creatorcontrib><title>Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel “probe”, which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant K D between reactants, which can be promoted by ∼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between −COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of −COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.</description><subject>Aptamers</subject><subject>Biomarkers</subject><subject>Biosensors</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fluorescence</subject><subject>Gelatinase</subject><subject>Gene sequencing</subject><subject>Ions</subject><subject>Learning algorithms</subject><subject>Leukocytes (neutrophilic)</subject><subject>Lipocalin</subject><subject>Machine learning</subject><subject>Mass transfer</subject><subject>Nucleotide sequence</subject><subject>Quantum dots</subject><subject>Urine</subject><subject>Xerogels</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kbtuFDEUhi0EEkvgDSgs0dDMcmzPbctocwFpCRHKSnSjM_ZxdiKPvdgzRbq8B_ByeRK82kBBQWVZ_v7v6Phn7K2ApQApPqBOS_To9I7GpdIgV1X1jC1EJaGo21Y-ZwsAUIVsAF6yVyndAQgBol6wH-vg0xRnPQ3-lqPnWzdFLL7ifjD8Cn3QwdvB00h-Ks79Dr0mwy_cHCIlTfnG127wg0bHz2ii7AmeXzucbIgj7-_5Nh3Mn1HvsoZvCKM_jjL8ZvbYO-JnV6f8G8VwS44_Pvy8jqGnx4dfr9kLiy7Rm6fzhG0vzm_WH4vNl8tP69NNgapSUyFlbSy1BqxcqboRFqkpQZalKWFFitCoGjQo3VsttG3Knhpj2rqisqoNSHXC3h-9-xi-z5Smbhzybs6hpzCnTrZNo9qmKlVG3_2D3oU55q8_UG1Vyzy2zVR5pHQMKUWy3T4OI8b7TkB3aKzLjXV_GuueGssxOMYOr3-9_438BomLoRw</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Yu, Meng</creator><creator>Ye, Rongkai</creator><creator>Zeng, Tao</creator><creator>Tan, Li</creator><creator>Zhao, Ziyu</creator><creator>Gao, Wenjing</creator><creator>Chen, Xin</creator><creator>Lian, Ziqi</creator><creator>Ma, Ying</creator><creator>Li, Aiqing</creator><creator>Hu, Jianqiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7706-4377</orcidid><orcidid>https://orcid.org/0000-0003-2204-0663</orcidid></search><sort><creationdate>20231024</creationdate><title>Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”</title><author>Yu, Meng ; Ye, Rongkai ; Zeng, Tao ; Tan, Li ; Zhao, Ziyu ; Gao, Wenjing ; Chen, Xin ; Lian, Ziqi ; Ma, Ying ; Li, Aiqing ; Hu, Jianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-226dfe8d0f293671fae740244d409e3ead360c03cbfc1cf74be7dd865e456d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aptamers</topic><topic>Biomarkers</topic><topic>Biosensors</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fluorescence</topic><topic>Gelatinase</topic><topic>Gene sequencing</topic><topic>Ions</topic><topic>Learning algorithms</topic><topic>Leukocytes (neutrophilic)</topic><topic>Lipocalin</topic><topic>Machine learning</topic><topic>Mass transfer</topic><topic>Nucleotide sequence</topic><topic>Quantum dots</topic><topic>Urine</topic><topic>Xerogels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Meng</creatorcontrib><creatorcontrib>Ye, Rongkai</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Tan, Li</creatorcontrib><creatorcontrib>Zhao, Ziyu</creatorcontrib><creatorcontrib>Gao, Wenjing</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Lian, Ziqi</creatorcontrib><creatorcontrib>Ma, Ying</creatorcontrib><creatorcontrib>Li, Aiqing</creatorcontrib><creatorcontrib>Hu, Jianqiang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Meng</au><au>Ye, Rongkai</au><au>Zeng, Tao</au><au>Tan, Li</au><au>Zhao, Ziyu</au><au>Gao, Wenjing</au><au>Chen, Xin</au><au>Lian, Ziqi</au><au>Ma, Ying</au><au>Li, Aiqing</au><au>Hu, Jianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-10-24</date><risdate>2023</risdate><volume>95</volume><issue>42</issue><spage>15690</spage><epage>15699</epage><pages>15690-15699</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Low mass transfer efficiency and unavoidable matrix effects seriously limit the development of rapid and accurate determination of biosensing systems. Herein, we have successfully constructed an ultra-rapid nanoconfinement-enhanced fluorescence clinical detection platform based on machine learning (ML) and DNA xerogel “probe”, which was performed by detecting neutrophil gelatinase-associated lipocalin (NGAL, protein biomarker of acute kidney injury). By regulating pore sizes of the xerogels, the transfer of NGAL in xerogels can approximate that in homogeneous solution. Due to electrostatic attraction of the pore entrances, NGAL rapidly enriches on the surface and inside the xerogels. The reaction rate of NGAL and aptamer cross-linked in xerogels is also accelerated because of the nanoconfinement effect-induced increasing reactant concentration and the enhanced affinity constant K D between reactants, which can be promoted by ∼667-fold than that in bulk solution, thus achieving ultra-rapid detection (ca. 5 min) of human urine. The platform could realize one-step detection without sample pretreatments due to the antiligand exchange effect on the surface of N-doped carbon quantum dots (N-CQDs) in xerogels, in which ligand exchange between −COOH and underlying interfering ions in urine will be inhibited due to higher adsorption energy of −COOH on the N-CQD surface relative to the interfering ions. Based on the ML-extended program, the real-time analysis of the urine fluorescence spectra can be completed within 2 s. Interestingly, by changing DNA, aptamer sequences, or xerogel fluorescence intensities, the detection platform can be customized for targeted diseases.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c02955</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7706-4377</orcidid><orcidid>https://orcid.org/0000-0003-2204-0663</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-10, Vol.95 (42), p.15690-15699
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2877387543
source ACS Publications
subjects Aptamers
Biomarkers
Biosensors
Deoxyribonucleic acid
DNA
Fluorescence
Gelatinase
Gene sequencing
Ions
Learning algorithms
Leukocytes (neutrophilic)
Lipocalin
Machine learning
Mass transfer
Nucleotide sequence
Quantum dots
Urine
Xerogels
title Constructing an Ultra-Rapid Nanoconfinement-Enhanced Fluorescence Clinical Detection Platform by Using Machine Learning and Tunable DNA Xerogel “Probe”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20an%20Ultra-Rapid%20Nanoconfinement-Enhanced%20Fluorescence%20Clinical%20Detection%20Platform%20by%20Using%20Machine%20Learning%20and%20Tunable%20DNA%20Xerogel%20%E2%80%9CProbe%E2%80%9D&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yu,%20Meng&rft.date=2023-10-24&rft.volume=95&rft.issue=42&rft.spage=15690&rft.epage=15699&rft.pages=15690-15699&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c02955&rft_dat=%3Cproquest_cross%3E2877387543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885622448&rft_id=info:pmid/&rfr_iscdi=true