Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening
The combined effects of compact TiO2 (c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2 (m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) p...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-01, Vol.36 (3), p.e2308819-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e2308819 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Yang, In Seok Dai, Zhenghong Ranka, Anush Chen, Du Zhu, Kai Berry, Joseph J. Guo, Peijun Padture, Nitin P. |
description | The combined effects of compact TiO2 (c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2 (m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2 without SAM to m‐TiO2 with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.
Incorporation of a self‐assembled monolayer at the interface in mesoscopic perovskite solar cells (PSCs) results in simultaneous enhancement of mechanical reliability, operational‐stability, and power‐conversion efficiency (PCE). Threefold increase in the interfacial toughness in a PSC with PCE of over 24% is responsible for T80 (duration at 80% initial PCE retained) of ≈18 000 h. Possible underlying mechanisms are elucidated. |
doi_str_mv | 10.1002/adma.202308819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877383418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915856905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-48ec458d9c6e21ca104b2ec3f646eb20e5f352b82147bfa67d709c39ac74412d3</originalsourceid><addsrcrecordid>eNqF0c9u1DAQBnALgehSuHJElrhwyeK_sX1cLQtUalWkLefIccatS2IvdlK0N8QT8Iw8CVltKRIXTnP5zacZfQi9pGRJCWFvbTfYJSOME62peYQWVDJaCWLkY7QghsvK1EKfoGel3BJCTE3qp-iEK80ZlWqBfmzDMPWjjZCmgjfxxkYHA8QRJ4833gcXILo9trHDlzvIdgwp2v7X95_b0bahD-P-IC-gpOLSLjj8CXK6K1_CCHibepvxGvq-4Ltg8VkcIXvrgu3xVZqubyCGeP0cPfG2L_Difp6iz-83V-uP1fnlh7P16rxyXHFTCQ1OSN0ZVwOjzlIiWgaO-1rU0DIC0nPJWs2oUK23teoUMY4b65QQlHX8FL055u5y-jpBGZshFDcfd3y-YVoprrmgeqav_6G3acrz37MyVGpZGyJntTwql1MpGXyzy2Gwed9Q0hzaaQ7tNA_tzAuv7mOndoDugf-pYwbmCL6FHvb_iWtW7y5Wf8N_A0z0nlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915856905</pqid></control><display><type>article</type><title>Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, In Seok ; Dai, Zhenghong ; Ranka, Anush ; Chen, Du ; Zhu, Kai ; Berry, Joseph J. ; Guo, Peijun ; Padture, Nitin P.</creator><creatorcontrib>Yang, In Seok ; Dai, Zhenghong ; Ranka, Anush ; Chen, Du ; Zhu, Kai ; Berry, Joseph J. ; Guo, Peijun ; Padture, Nitin P.</creatorcontrib><description>The combined effects of compact TiO2 (c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2 (m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2 without SAM to m‐TiO2 with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.
Incorporation of a self‐assembled monolayer at the interface in mesoscopic perovskite solar cells (PSCs) results in simultaneous enhancement of mechanical reliability, operational‐stability, and power‐conversion efficiency (PCE). Threefold increase in the interfacial toughness in a PSC with PCE of over 24% is responsible for T80 (duration at 80% initial PCE retained) of ≈18 000 h. Possible underlying mechanisms are elucidated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202308819</identifier><identifier>PMID: 37832157</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Energy conversion efficiency ; Interface stability ; interfaces ; Iodine ; Mechanical properties ; mechanical reliability ; mesoscopic ; Nanocomposites ; Perovskites ; Photovoltaic cells ; Self-assembly ; self‐assembled monolayers ; Silanes ; Solar cells ; stabilities ; Stability analysis ; Synergistic effect ; Titanium dioxide</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (3), p.e2308819-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-48ec458d9c6e21ca104b2ec3f646eb20e5f352b82147bfa67d709c39ac74412d3</citedby><cites>FETCH-LOGICAL-c3739-48ec458d9c6e21ca104b2ec3f646eb20e5f352b82147bfa67d709c39ac74412d3</cites><orcidid>0000-0001-6622-8559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202308819$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202308819$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37832157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, In Seok</creatorcontrib><creatorcontrib>Dai, Zhenghong</creatorcontrib><creatorcontrib>Ranka, Anush</creatorcontrib><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Berry, Joseph J.</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Padture, Nitin P.</creatorcontrib><title>Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The combined effects of compact TiO2 (c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2 (m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2 without SAM to m‐TiO2 with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.
Incorporation of a self‐assembled monolayer at the interface in mesoscopic perovskite solar cells (PSCs) results in simultaneous enhancement of mechanical reliability, operational‐stability, and power‐conversion efficiency (PCE). Threefold increase in the interfacial toughness in a PSC with PCE of over 24% is responsible for T80 (duration at 80% initial PCE retained) of ≈18 000 h. Possible underlying mechanisms are elucidated.</description><subject>Energy conversion efficiency</subject><subject>Interface stability</subject><subject>interfaces</subject><subject>Iodine</subject><subject>Mechanical properties</subject><subject>mechanical reliability</subject><subject>mesoscopic</subject><subject>Nanocomposites</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Self-assembly</subject><subject>self‐assembled monolayers</subject><subject>Silanes</subject><subject>Solar cells</subject><subject>stabilities</subject><subject>Stability analysis</subject><subject>Synergistic effect</subject><subject>Titanium dioxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0c9u1DAQBnALgehSuHJElrhwyeK_sX1cLQtUalWkLefIccatS2IvdlK0N8QT8Iw8CVltKRIXTnP5zacZfQi9pGRJCWFvbTfYJSOME62peYQWVDJaCWLkY7QghsvK1EKfoGel3BJCTE3qp-iEK80ZlWqBfmzDMPWjjZCmgjfxxkYHA8QRJ4833gcXILo9trHDlzvIdgwp2v7X95_b0bahD-P-IC-gpOLSLjj8CXK6K1_CCHibepvxGvq-4Ltg8VkcIXvrgu3xVZqubyCGeP0cPfG2L_Difp6iz-83V-uP1fnlh7P16rxyXHFTCQ1OSN0ZVwOjzlIiWgaO-1rU0DIC0nPJWs2oUK23teoUMY4b65QQlHX8FL055u5y-jpBGZshFDcfd3y-YVoprrmgeqav_6G3acrz37MyVGpZGyJntTwql1MpGXyzy2Gwed9Q0hzaaQ7tNA_tzAuv7mOndoDugf-pYwbmCL6FHvb_iWtW7y5Wf8N_A0z0nlQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Yang, In Seok</creator><creator>Dai, Zhenghong</creator><creator>Ranka, Anush</creator><creator>Chen, Du</creator><creator>Zhu, Kai</creator><creator>Berry, Joseph J.</creator><creator>Guo, Peijun</creator><creator>Padture, Nitin P.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6622-8559</orcidid></search><sort><creationdate>20240101</creationdate><title>Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening</title><author>Yang, In Seok ; Dai, Zhenghong ; Ranka, Anush ; Chen, Du ; Zhu, Kai ; Berry, Joseph J. ; Guo, Peijun ; Padture, Nitin P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-48ec458d9c6e21ca104b2ec3f646eb20e5f352b82147bfa67d709c39ac74412d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy conversion efficiency</topic><topic>Interface stability</topic><topic>interfaces</topic><topic>Iodine</topic><topic>Mechanical properties</topic><topic>mechanical reliability</topic><topic>mesoscopic</topic><topic>Nanocomposites</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Self-assembly</topic><topic>self‐assembled monolayers</topic><topic>Silanes</topic><topic>Solar cells</topic><topic>stabilities</topic><topic>Stability analysis</topic><topic>Synergistic effect</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, In Seok</creatorcontrib><creatorcontrib>Dai, Zhenghong</creatorcontrib><creatorcontrib>Ranka, Anush</creatorcontrib><creatorcontrib>Chen, Du</creatorcontrib><creatorcontrib>Zhu, Kai</creatorcontrib><creatorcontrib>Berry, Joseph J.</creatorcontrib><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Padture, Nitin P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, In Seok</au><au>Dai, Zhenghong</au><au>Ranka, Anush</au><au>Chen, Du</au><au>Zhu, Kai</au><au>Berry, Joseph J.</au><au>Guo, Peijun</au><au>Padture, Nitin P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><spage>e2308819</spage><epage>n/a</epage><pages>e2308819-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The combined effects of compact TiO2 (c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2 (m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2 without SAM to m‐TiO2 with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability.
Incorporation of a self‐assembled monolayer at the interface in mesoscopic perovskite solar cells (PSCs) results in simultaneous enhancement of mechanical reliability, operational‐stability, and power‐conversion efficiency (PCE). Threefold increase in the interfacial toughness in a PSC with PCE of over 24% is responsible for T80 (duration at 80% initial PCE retained) of ≈18 000 h. Possible underlying mechanisms are elucidated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37832157</pmid><doi>10.1002/adma.202308819</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6622-8559</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-01, Vol.36 (3), p.e2308819-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2877383418 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Energy conversion efficiency Interface stability interfaces Iodine Mechanical properties mechanical reliability mesoscopic Nanocomposites Perovskites Photovoltaic cells Self-assembly self‐assembled monolayers Silanes Solar cells stabilities Stability analysis Synergistic effect Titanium dioxide |
title | Simultaneous Enhancement of Efficiency and Operational‐Stability of Mesoscopic Perovskite Solar Cells via Interfacial Toughening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Enhancement%20of%20Efficiency%20and%20Operational%E2%80%90Stability%20of%20Mesoscopic%20Perovskite%20Solar%20Cells%20via%20Interfacial%20Toughening&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yang,%20In%20Seok&rft.date=2024-01-01&rft.volume=36&rft.issue=3&rft.spage=e2308819&rft.epage=n/a&rft.pages=e2308819-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202308819&rft_dat=%3Cproquest_cross%3E2915856905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915856905&rft_id=info:pmid/37832157&rfr_iscdi=true |