The geologic history of primary productivity

The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2023-11, Vol.33 (21), p.4741-4750.e5
Hauptverfasser: Crockford, Peter W., Bar On, Yinon M., Ward, Luce M., Milo, Ron, Halevy, Itay
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4750.e5
container_issue 21
container_start_page 4741
container_title Current biology
container_volume 33
creator Crockford, Peter W.
Bar On, Yinon M.
Ward, Luce M.
Milo, Ron
Halevy, Itay
description The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.
doi_str_mv 10.1016/j.cub.2023.09.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877380779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877380779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-3212bf54e9c24731bcae016d32aef4764f616113dc4acfcfb2e960f2cda97a243</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqXwA9gyMpDw_Oz6Y0QVFKRKLGW2HMduE6W4xAlS_z2u2une4eq9o0PII4WKAhUvXeWmukJAVoGugMMVmVEldQmcL67JDLSAUivEW3KXUgdAUWkxI8-bnS-2PvZx27pi16YxDscihuIwtHub62GIzeTG9q8dj_fkJtg--YdLzsn3-9tm-VGuv1afy9d16VCqsWRIsQ4L7rVDLhmtnfWZsWFofeBS8CCooJQ1jlsXXKjRZ7qArrFaWuRsTp7Od_Pz38mn0ezb5Hzf2x8fp2RQSckUSKnzlJ6nbogpDT6YC7ihYE5mTGeyGXMyY0CbbIb9AxsIV5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2877380779</pqid></control><display><type>article</type><title>The geologic history of primary productivity</title><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Crockford, Peter W. ; Bar On, Yinon M. ; Ward, Luce M. ; Milo, Ron ; Halevy, Itay</creator><creatorcontrib>Crockford, Peter W. ; Bar On, Yinon M. ; Ward, Luce M. ; Milo, Ron ; Halevy, Itay</creatorcontrib><description>The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2023.09.040</identifier><language>eng</language><ispartof>Current biology, 2023-11, Vol.33 (21), p.4741-4750.e5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-3212bf54e9c24731bcae016d32aef4764f616113dc4acfcfb2e960f2cda97a243</citedby><cites>FETCH-LOGICAL-c278t-3212bf54e9c24731bcae016d32aef4764f616113dc4acfcfb2e960f2cda97a243</cites><orcidid>0000-0002-0770-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Crockford, Peter W.</creatorcontrib><creatorcontrib>Bar On, Yinon M.</creatorcontrib><creatorcontrib>Ward, Luce M.</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Halevy, Itay</creatorcontrib><title>The geologic history of primary productivity</title><title>Current biology</title><description>The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.</description><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqXwA9gyMpDw_Oz6Y0QVFKRKLGW2HMduE6W4xAlS_z2u2une4eq9o0PII4WKAhUvXeWmukJAVoGugMMVmVEldQmcL67JDLSAUivEW3KXUgdAUWkxI8-bnS-2PvZx27pi16YxDscihuIwtHub62GIzeTG9q8dj_fkJtg--YdLzsn3-9tm-VGuv1afy9d16VCqsWRIsQ4L7rVDLhmtnfWZsWFofeBS8CCooJQ1jlsXXKjRZ7qArrFaWuRsTp7Od_Pz38mn0ezb5Hzf2x8fp2RQSckUSKnzlJ6nbogpDT6YC7ihYE5mTGeyGXMyY0CbbIb9AxsIV5o</recordid><startdate>20231106</startdate><enddate>20231106</enddate><creator>Crockford, Peter W.</creator><creator>Bar On, Yinon M.</creator><creator>Ward, Luce M.</creator><creator>Milo, Ron</creator><creator>Halevy, Itay</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0770-6482</orcidid></search><sort><creationdate>20231106</creationdate><title>The geologic history of primary productivity</title><author>Crockford, Peter W. ; Bar On, Yinon M. ; Ward, Luce M. ; Milo, Ron ; Halevy, Itay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-3212bf54e9c24731bcae016d32aef4764f616113dc4acfcfb2e960f2cda97a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crockford, Peter W.</creatorcontrib><creatorcontrib>Bar On, Yinon M.</creatorcontrib><creatorcontrib>Ward, Luce M.</creatorcontrib><creatorcontrib>Milo, Ron</creatorcontrib><creatorcontrib>Halevy, Itay</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crockford, Peter W.</au><au>Bar On, Yinon M.</au><au>Ward, Luce M.</au><au>Milo, Ron</au><au>Halevy, Itay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geologic history of primary productivity</atitle><jtitle>Current biology</jtitle><date>2023-11-06</date><risdate>2023</risdate><volume>33</volume><issue>21</issue><spage>4741</spage><epage>4750.e5</epage><pages>4741-4750.e5</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The rate of primary productivity is a keystone variable in driving biogeochemical cycles today and has been throughout Earth's past.1 For example, it plays a critical role in determining nutrient stoichiometry in the oceans,2 the amount of global biomass,3 and the composition of Earth's atmosphere.4 Modern estimates suggest that terrestrial and marine realms contribute near-equal amounts to global gross primary productivity (GPP).5 However, this productivity balance has shifted significantly in both recent times6 and through deep time.7,8 Combining the marine and terrestrial components, modern GPP fixes ≈250 billion tonnes of carbon per year (Gt C year-1).5,9,10,11 A grand challenge in the study of the history of life on Earth has been to constrain the trajectory that connects present-day productivity to the origin of life. Here, we address this gap by piecing together estimates of primary productivity from the origin of life to the present day. We estimate that ∼1011-1012 Gt C has cumulatively been fixed through GPP (≈100 times greater than Earth's entire carbon stock). We further estimate that 1039-1040 cells have occupied the Earth to date, that more autotrophs than heterotrophs have ever existed, and that cyanobacteria likely account for a larger proportion than any other group in terms of the number of cells. We discuss implications for evolutionary trajectories and highlight the early Proterozoic, which encompasses the Great Oxidation Event (GOE), as the time where most uncertainty exists regarding the quantitative census presented here.</abstract><doi>10.1016/j.cub.2023.09.040</doi><orcidid>https://orcid.org/0000-0002-0770-6482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2023-11, Vol.33 (21), p.4741-4750.e5
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_2877380779
source Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title The geologic history of primary productivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geologic%20history%20of%20primary%20productivity&rft.jtitle=Current%20biology&rft.au=Crockford,%20Peter%20W.&rft.date=2023-11-06&rft.volume=33&rft.issue=21&rft.spage=4741&rft.epage=4750.e5&rft.pages=4741-4750.e5&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2023.09.040&rft_dat=%3Cproquest_cross%3E2877380779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2877380779&rft_id=info:pmid/&rfr_iscdi=true