Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture

Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-02, Vol.20 (8), p.e2307928-n/a
Hauptverfasser: Ataie, Zaman, Horchler, Summer, Jaberi, Arian, Koduru, Srinivas V., El‐Mallah, Jessica C., Sun, Mingjie, Kheirabadi, Sina, Kedzierski, Alexander, Risbud, Aneesh, Silva, Angelo Roncalli Alves E, Ravnic, Dino J., Sheikhi, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e2307928
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Ataie, Zaman
Horchler, Summer
Jaberi, Arian
Koduru, Srinivas V.
El‐Mallah, Jessica C.
Sun, Mingjie
Kheirabadi, Sina
Kedzierski, Alexander
Risbud, Aneesh
Silva, Angelo Roncalli Alves E
Ravnic, Dino J.
Sheikhi, Amir
description Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine. Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.
doi_str_mv 10.1002/smll.202307928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877380441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877380441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRbK1ePUrAi5fU_Uizm2Mp2goRhVqvy2YzW1I2Sd1NkPrXm9BawYunGeb95jHzELomeEwwpve-tHZMMWWYJ1ScoCGJCQtjQZPTY0_wAF14v8GYERrxczRgXNCICjxEeqo1WHCqKap18KqaBlwFefCuvG6tcsVXp9RVsPK9Pneq6qfBYpe7eg02WGplTG1zH6gqD5atWxda2eC50K7etpVuWgeX6Mwo6-HqUEdo9fjwNluE6cv8aTZNQx3FXISCUMgwS5jhPE-SnOCMUxJzbgwGNjGx0XmmOMecasUnihIQBiCJcWZUpAQbobu979bVHy34RpaF776zqoK69ZIKzpnAUUQ69PYPuqlbV3XXSZowwsSEkp4a76nuGe8dGLl1RancThIs-_hlH788xt8t3Bxs26yE_Ij_5N0ByR74LCzs_rGTy-c0_TX_BtjPkt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931385211</pqid></control><display><type>article</type><title>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ataie, Zaman ; Horchler, Summer ; Jaberi, Arian ; Koduru, Srinivas V. ; El‐Mallah, Jessica C. ; Sun, Mingjie ; Kheirabadi, Sina ; Kedzierski, Alexander ; Risbud, Aneesh ; Silva, Angelo Roncalli Alves E ; Ravnic, Dino J. ; Sheikhi, Amir</creator><creatorcontrib>Ataie, Zaman ; Horchler, Summer ; Jaberi, Arian ; Koduru, Srinivas V. ; El‐Mallah, Jessica C. ; Sun, Mingjie ; Kheirabadi, Sina ; Kedzierski, Alexander ; Risbud, Aneesh ; Silva, Angelo Roncalli Alves E ; Ravnic, Dino J. ; Sheikhi, Amir</creatorcontrib><description>Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine. Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307928</identifier><identifier>PMID: 37824280</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomedical materials ; Blood vessels ; granular hydrogel ; Humans ; Hydrogels ; Hydrogels - pharmacology ; micropuncture ; Needles ; Neovascularization, Pathologic ; Neovascularization, Physiologic ; Network formation ; Plastic surgery ; Punctures ; Reconstructive surgery ; Scaffolds ; Soft tissues ; Space structures ; Tissue Engineering ; Tissue Scaffolds ; translational biomaterials ; vascular pattern ; vascularization</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307928-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</citedby><cites>FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</cites><orcidid>0000-0002-4495-6675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307928$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307928$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37824280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ataie, Zaman</creatorcontrib><creatorcontrib>Horchler, Summer</creatorcontrib><creatorcontrib>Jaberi, Arian</creatorcontrib><creatorcontrib>Koduru, Srinivas V.</creatorcontrib><creatorcontrib>El‐Mallah, Jessica C.</creatorcontrib><creatorcontrib>Sun, Mingjie</creatorcontrib><creatorcontrib>Kheirabadi, Sina</creatorcontrib><creatorcontrib>Kedzierski, Alexander</creatorcontrib><creatorcontrib>Risbud, Aneesh</creatorcontrib><creatorcontrib>Silva, Angelo Roncalli Alves E</creatorcontrib><creatorcontrib>Ravnic, Dino J.</creatorcontrib><creatorcontrib>Sheikhi, Amir</creatorcontrib><title>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine. Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.</description><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>granular hydrogel</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>micropuncture</subject><subject>Needles</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Physiologic</subject><subject>Network formation</subject><subject>Plastic surgery</subject><subject>Punctures</subject><subject>Reconstructive surgery</subject><subject>Scaffolds</subject><subject>Soft tissues</subject><subject>Space structures</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>translational biomaterials</subject><subject>vascular pattern</subject><subject>vascularization</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkM1Lw0AQxRdRbK1ePUrAi5fU_Uizm2Mp2goRhVqvy2YzW1I2Sd1NkPrXm9BawYunGeb95jHzELomeEwwpve-tHZMMWWYJ1ScoCGJCQtjQZPTY0_wAF14v8GYERrxczRgXNCICjxEeqo1WHCqKap18KqaBlwFefCuvG6tcsVXp9RVsPK9Pneq6qfBYpe7eg02WGplTG1zH6gqD5atWxda2eC50K7etpVuWgeX6Mwo6-HqUEdo9fjwNluE6cv8aTZNQx3FXISCUMgwS5jhPE-SnOCMUxJzbgwGNjGx0XmmOMecasUnihIQBiCJcWZUpAQbobu979bVHy34RpaF776zqoK69ZIKzpnAUUQ69PYPuqlbV3XXSZowwsSEkp4a76nuGe8dGLl1RancThIs-_hlH788xt8t3Bxs26yE_Ij_5N0ByR74LCzs_rGTy-c0_TX_BtjPkt0</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ataie, Zaman</creator><creator>Horchler, Summer</creator><creator>Jaberi, Arian</creator><creator>Koduru, Srinivas V.</creator><creator>El‐Mallah, Jessica C.</creator><creator>Sun, Mingjie</creator><creator>Kheirabadi, Sina</creator><creator>Kedzierski, Alexander</creator><creator>Risbud, Aneesh</creator><creator>Silva, Angelo Roncalli Alves E</creator><creator>Ravnic, Dino J.</creator><creator>Sheikhi, Amir</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4495-6675</orcidid></search><sort><creationdate>20240201</creationdate><title>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</title><author>Ataie, Zaman ; Horchler, Summer ; Jaberi, Arian ; Koduru, Srinivas V. ; El‐Mallah, Jessica C. ; Sun, Mingjie ; Kheirabadi, Sina ; Kedzierski, Alexander ; Risbud, Aneesh ; Silva, Angelo Roncalli Alves E ; Ravnic, Dino J. ; Sheikhi, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>granular hydrogel</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>micropuncture</topic><topic>Needles</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Physiologic</topic><topic>Network formation</topic><topic>Plastic surgery</topic><topic>Punctures</topic><topic>Reconstructive surgery</topic><topic>Scaffolds</topic><topic>Soft tissues</topic><topic>Space structures</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>translational biomaterials</topic><topic>vascular pattern</topic><topic>vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ataie, Zaman</creatorcontrib><creatorcontrib>Horchler, Summer</creatorcontrib><creatorcontrib>Jaberi, Arian</creatorcontrib><creatorcontrib>Koduru, Srinivas V.</creatorcontrib><creatorcontrib>El‐Mallah, Jessica C.</creatorcontrib><creatorcontrib>Sun, Mingjie</creatorcontrib><creatorcontrib>Kheirabadi, Sina</creatorcontrib><creatorcontrib>Kedzierski, Alexander</creatorcontrib><creatorcontrib>Risbud, Aneesh</creatorcontrib><creatorcontrib>Silva, Angelo Roncalli Alves E</creatorcontrib><creatorcontrib>Ravnic, Dino J.</creatorcontrib><creatorcontrib>Sheikhi, Amir</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ataie, Zaman</au><au>Horchler, Summer</au><au>Jaberi, Arian</au><au>Koduru, Srinivas V.</au><au>El‐Mallah, Jessica C.</au><au>Sun, Mingjie</au><au>Kheirabadi, Sina</au><au>Kedzierski, Alexander</au><au>Risbud, Aneesh</au><au>Silva, Angelo Roncalli Alves E</au><au>Ravnic, Dino J.</au><au>Sheikhi, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e2307928</spage><epage>n/a</epage><pages>e2307928-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine. Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37824280</pmid><doi>10.1002/smll.202307928</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4495-6675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307928-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2877380441
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biomedical materials
Blood vessels
granular hydrogel
Humans
Hydrogels
Hydrogels - pharmacology
micropuncture
Needles
Neovascularization, Pathologic
Neovascularization, Physiologic
Network formation
Plastic surgery
Punctures
Reconstructive surgery
Scaffolds
Soft tissues
Space structures
Tissue Engineering
Tissue Scaffolds
translational biomaterials
vascular pattern
vascularization
title Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Patterned%20Vascularization%20Using%20Granular%20Hydrogel%20Scaffolds%20and%20Surgical%20Micropuncture&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ataie,%20Zaman&rft.date=2024-02-01&rft.volume=20&rft.issue=8&rft.spage=e2307928&rft.epage=n/a&rft.pages=e2307928-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307928&rft_dat=%3Cproquest_cross%3E2877380441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931385211&rft_id=info:pmid/37824280&rfr_iscdi=true