Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture
Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-02, Vol.20 (8), p.e2307928-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e2307928 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Ataie, Zaman Horchler, Summer Jaberi, Arian Koduru, Srinivas V. El‐Mallah, Jessica C. Sun, Mingjie Kheirabadi, Sina Kedzierski, Alexander Risbud, Aneesh Silva, Angelo Roncalli Alves E Ravnic, Dino J. Sheikhi, Amir |
description | Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics. |
doi_str_mv | 10.1002/smll.202307928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2877380441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2877380441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRbK1ePUrAi5fU_Uizm2Mp2goRhVqvy2YzW1I2Sd1NkPrXm9BawYunGeb95jHzELomeEwwpve-tHZMMWWYJ1ScoCGJCQtjQZPTY0_wAF14v8GYERrxczRgXNCICjxEeqo1WHCqKap18KqaBlwFefCuvG6tcsVXp9RVsPK9Pneq6qfBYpe7eg02WGplTG1zH6gqD5atWxda2eC50K7etpVuWgeX6Mwo6-HqUEdo9fjwNluE6cv8aTZNQx3FXISCUMgwS5jhPE-SnOCMUxJzbgwGNjGx0XmmOMecasUnihIQBiCJcWZUpAQbobu979bVHy34RpaF776zqoK69ZIKzpnAUUQ69PYPuqlbV3XXSZowwsSEkp4a76nuGe8dGLl1RancThIs-_hlH788xt8t3Bxs26yE_Ij_5N0ByR74LCzs_rGTy-c0_TX_BtjPkt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931385211</pqid></control><display><type>article</type><title>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ataie, Zaman ; Horchler, Summer ; Jaberi, Arian ; Koduru, Srinivas V. ; El‐Mallah, Jessica C. ; Sun, Mingjie ; Kheirabadi, Sina ; Kedzierski, Alexander ; Risbud, Aneesh ; Silva, Angelo Roncalli Alves E ; Ravnic, Dino J. ; Sheikhi, Amir</creator><creatorcontrib>Ataie, Zaman ; Horchler, Summer ; Jaberi, Arian ; Koduru, Srinivas V. ; El‐Mallah, Jessica C. ; Sun, Mingjie ; Kheirabadi, Sina ; Kedzierski, Alexander ; Risbud, Aneesh ; Silva, Angelo Roncalli Alves E ; Ravnic, Dino J. ; Sheikhi, Amir</creatorcontrib><description>Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307928</identifier><identifier>PMID: 37824280</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomedical materials ; Blood vessels ; granular hydrogel ; Humans ; Hydrogels ; Hydrogels - pharmacology ; micropuncture ; Needles ; Neovascularization, Pathologic ; Neovascularization, Physiologic ; Network formation ; Plastic surgery ; Punctures ; Reconstructive surgery ; Scaffolds ; Soft tissues ; Space structures ; Tissue Engineering ; Tissue Scaffolds ; translational biomaterials ; vascular pattern ; vascularization</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307928-n/a</ispartof><rights>2023 The Authors. Small published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Small published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</citedby><cites>FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</cites><orcidid>0000-0002-4495-6675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307928$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307928$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37824280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ataie, Zaman</creatorcontrib><creatorcontrib>Horchler, Summer</creatorcontrib><creatorcontrib>Jaberi, Arian</creatorcontrib><creatorcontrib>Koduru, Srinivas V.</creatorcontrib><creatorcontrib>El‐Mallah, Jessica C.</creatorcontrib><creatorcontrib>Sun, Mingjie</creatorcontrib><creatorcontrib>Kheirabadi, Sina</creatorcontrib><creatorcontrib>Kedzierski, Alexander</creatorcontrib><creatorcontrib>Risbud, Aneesh</creatorcontrib><creatorcontrib>Silva, Angelo Roncalli Alves E</creatorcontrib><creatorcontrib>Ravnic, Dino J.</creatorcontrib><creatorcontrib>Sheikhi, Amir</creatorcontrib><title>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.</description><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>granular hydrogel</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>micropuncture</subject><subject>Needles</subject><subject>Neovascularization, Pathologic</subject><subject>Neovascularization, Physiologic</subject><subject>Network formation</subject><subject>Plastic surgery</subject><subject>Punctures</subject><subject>Reconstructive surgery</subject><subject>Scaffolds</subject><subject>Soft tissues</subject><subject>Space structures</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>translational biomaterials</subject><subject>vascular pattern</subject><subject>vascularization</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkM1Lw0AQxRdRbK1ePUrAi5fU_Uizm2Mp2goRhVqvy2YzW1I2Sd1NkPrXm9BawYunGeb95jHzELomeEwwpve-tHZMMWWYJ1ScoCGJCQtjQZPTY0_wAF14v8GYERrxczRgXNCICjxEeqo1WHCqKap18KqaBlwFefCuvG6tcsVXp9RVsPK9Pneq6qfBYpe7eg02WGplTG1zH6gqD5atWxda2eC50K7etpVuWgeX6Mwo6-HqUEdo9fjwNluE6cv8aTZNQx3FXISCUMgwS5jhPE-SnOCMUxJzbgwGNjGx0XmmOMecasUnihIQBiCJcWZUpAQbobu979bVHy34RpaF776zqoK69ZIKzpnAUUQ69PYPuqlbV3XXSZowwsSEkp4a76nuGe8dGLl1RancThIs-_hlH788xt8t3Bxs26yE_Ij_5N0ByR74LCzs_rGTy-c0_TX_BtjPkt0</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ataie, Zaman</creator><creator>Horchler, Summer</creator><creator>Jaberi, Arian</creator><creator>Koduru, Srinivas V.</creator><creator>El‐Mallah, Jessica C.</creator><creator>Sun, Mingjie</creator><creator>Kheirabadi, Sina</creator><creator>Kedzierski, Alexander</creator><creator>Risbud, Aneesh</creator><creator>Silva, Angelo Roncalli Alves E</creator><creator>Ravnic, Dino J.</creator><creator>Sheikhi, Amir</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4495-6675</orcidid></search><sort><creationdate>20240201</creationdate><title>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</title><author>Ataie, Zaman ; Horchler, Summer ; Jaberi, Arian ; Koduru, Srinivas V. ; El‐Mallah, Jessica C. ; Sun, Mingjie ; Kheirabadi, Sina ; Kedzierski, Alexander ; Risbud, Aneesh ; Silva, Angelo Roncalli Alves E ; Ravnic, Dino J. ; Sheikhi, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4678-812eb0393f77d99d10b721677ff0e35f6fcdba77072ca75a21e8fee960bfa4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>granular hydrogel</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>micropuncture</topic><topic>Needles</topic><topic>Neovascularization, Pathologic</topic><topic>Neovascularization, Physiologic</topic><topic>Network formation</topic><topic>Plastic surgery</topic><topic>Punctures</topic><topic>Reconstructive surgery</topic><topic>Scaffolds</topic><topic>Soft tissues</topic><topic>Space structures</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>translational biomaterials</topic><topic>vascular pattern</topic><topic>vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ataie, Zaman</creatorcontrib><creatorcontrib>Horchler, Summer</creatorcontrib><creatorcontrib>Jaberi, Arian</creatorcontrib><creatorcontrib>Koduru, Srinivas V.</creatorcontrib><creatorcontrib>El‐Mallah, Jessica C.</creatorcontrib><creatorcontrib>Sun, Mingjie</creatorcontrib><creatorcontrib>Kheirabadi, Sina</creatorcontrib><creatorcontrib>Kedzierski, Alexander</creatorcontrib><creatorcontrib>Risbud, Aneesh</creatorcontrib><creatorcontrib>Silva, Angelo Roncalli Alves E</creatorcontrib><creatorcontrib>Ravnic, Dino J.</creatorcontrib><creatorcontrib>Sheikhi, Amir</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ataie, Zaman</au><au>Horchler, Summer</au><au>Jaberi, Arian</au><au>Koduru, Srinivas V.</au><au>El‐Mallah, Jessica C.</au><au>Sun, Mingjie</au><au>Kheirabadi, Sina</au><au>Kedzierski, Alexander</au><au>Risbud, Aneesh</au><au>Silva, Angelo Roncalli Alves E</au><au>Ravnic, Dino J.</au><au>Sheikhi, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e2307928</spage><epage>n/a</epage><pages>e2307928-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long‐standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co‐developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.
Coordinated engineering (granular hydrogel scaffold) and surgical (micropuncture) approaches yield rapidly vascularized scaffolds with controllable microvascular patterns that may enable the development of new and translatable reconstructive and regenerative therapeutics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37824280</pmid><doi>10.1002/smll.202307928</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4495-6675</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307928-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2877380441 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biomedical materials Blood vessels granular hydrogel Humans Hydrogels Hydrogels - pharmacology micropuncture Needles Neovascularization, Pathologic Neovascularization, Physiologic Network formation Plastic surgery Punctures Reconstructive surgery Scaffolds Soft tissues Space structures Tissue Engineering Tissue Scaffolds translational biomaterials vascular pattern vascularization |
title | Accelerating Patterned Vascularization Using Granular Hydrogel Scaffolds and Surgical Micropuncture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Patterned%20Vascularization%20Using%20Granular%20Hydrogel%20Scaffolds%20and%20Surgical%20Micropuncture&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ataie,%20Zaman&rft.date=2024-02-01&rft.volume=20&rft.issue=8&rft.spage=e2307928&rft.epage=n/a&rft.pages=e2307928-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307928&rft_dat=%3Cproquest_cross%3E2877380441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931385211&rft_id=info:pmid/37824280&rfr_iscdi=true |