Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries
Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. H...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-02, Vol.20 (8), p.e2307342-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | e2307342 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Chen, Jinhang Chen, Weiyin Deng, Bing Li, Bowen Kittrell, Carter Tour, James M. |
description | Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs.
Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. |
doi_str_mv | 10.1002/smll.202307342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2876639735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876639735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-e258a01d6333b29360d3d0fb509dfd3230fc6c994c867cf75267a7d64b7253083</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoznjZupSCGzcdk5w2aZdavAxUBKvrkCapZuhlbFpkdj6Cz-iT2DLjCG5c5UC-851zfoROCJ4RjOmFq8pyRjEFzCGgO2hKGAGfRTTe3dYET9CBcwuMgdCA76MJ8IiSgOApShPZvTbaePO6M20hlfGSpnZd26vONrWXr7xHubTay-wI2PrFs7WXNaXVXx-fWSc7413Jbvwy7gjtFbJ05njzHqLnm-un5M5PH27nyWXqK6AR9Q0NI4mJZgCQ0xgY1qBxkYc41oWG4ZZCMRXHgYoYVwUPKeOSaxbknIaAIzhE52vvsm3eeuM6UVmnTFnK2jS9EzTijEHMIRzQsz_oounbethODJMJRCEN2EDN1pRqG-daU4hlayvZrgTBYsxZjDmLbc5Dw-lG2-eV0Vv8J9gBiNfAuy3N6h-dyO7T9Ff-DVxyiPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931385246</pqid></control><display><type>article</type><title>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Jinhang ; Chen, Weiyin ; Deng, Bing ; Li, Bowen ; Kittrell, Carter ; Tour, James M.</creator><creatorcontrib>Chen, Jinhang ; Chen, Weiyin ; Deng, Bing ; Li, Bowen ; Kittrell, Carter ; Tour, James M.</creatorcontrib><description>Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs.
Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307342</identifier><identifier>PMID: 37821410</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>cathode interface ; Cathodes ; Cobalt oxides ; Cooling rate ; co‐sintering ; Interdiffusion ; LATP ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Organic liquids ; oxide‐based solid electrolytes ; Room temperature ; Sintering ; Solid electrolytes ; solid‐state batteries ; Thermal runaway</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307342-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3282-e258a01d6333b29360d3d0fb509dfd3230fc6c994c867cf75267a7d64b7253083</cites><orcidid>0000-0003-0530-8410 ; 0000-0002-8479-9328 ; 0000-0002-8449-4292 ; 0000-0002-6150-5104 ; 0000-0002-6427-4129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307342$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37821410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jinhang</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Kittrell, Carter</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs.
Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.</description><subject>cathode interface</subject><subject>Cathodes</subject><subject>Cobalt oxides</subject><subject>Cooling rate</subject><subject>co‐sintering</subject><subject>Interdiffusion</subject><subject>LATP</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Organic liquids</subject><subject>oxide‐based solid electrolytes</subject><subject>Room temperature</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>Thermal runaway</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoznjZupSCGzcdk5w2aZdavAxUBKvrkCapZuhlbFpkdj6Cz-iT2DLjCG5c5UC-851zfoROCJ4RjOmFq8pyRjEFzCGgO2hKGAGfRTTe3dYET9CBcwuMgdCA76MJ8IiSgOApShPZvTbaePO6M20hlfGSpnZd26vONrWXr7xHubTay-wI2PrFs7WXNaXVXx-fWSc7413Jbvwy7gjtFbJ05njzHqLnm-un5M5PH27nyWXqK6AR9Q0NI4mJZgCQ0xgY1qBxkYc41oWG4ZZCMRXHgYoYVwUPKeOSaxbknIaAIzhE52vvsm3eeuM6UVmnTFnK2jS9EzTijEHMIRzQsz_oounbethODJMJRCEN2EDN1pRqG-daU4hlayvZrgTBYsxZjDmLbc5Dw-lG2-eV0Vv8J9gBiNfAuy3N6h-dyO7T9Ff-DVxyiPE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Chen, Jinhang</creator><creator>Chen, Weiyin</creator><creator>Deng, Bing</creator><creator>Li, Bowen</creator><creator>Kittrell, Carter</creator><creator>Tour, James M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0530-8410</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-8449-4292</orcidid><orcidid>https://orcid.org/0000-0002-6150-5104</orcidid><orcidid>https://orcid.org/0000-0002-6427-4129</orcidid></search><sort><creationdate>20240201</creationdate><title>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</title><author>Chen, Jinhang ; Chen, Weiyin ; Deng, Bing ; Li, Bowen ; Kittrell, Carter ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-e258a01d6333b29360d3d0fb509dfd3230fc6c994c867cf75267a7d64b7253083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cathode interface</topic><topic>Cathodes</topic><topic>Cobalt oxides</topic><topic>Cooling rate</topic><topic>co‐sintering</topic><topic>Interdiffusion</topic><topic>LATP</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Organic liquids</topic><topic>oxide‐based solid electrolytes</topic><topic>Room temperature</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jinhang</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Kittrell, Carter</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jinhang</au><au>Chen, Weiyin</au><au>Deng, Bing</au><au>Li, Bowen</au><au>Kittrell, Carter</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e2307342</spage><epage>n/a</epage><pages>e2307342-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs.
Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37821410</pmid><doi>10.1002/smll.202307342</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0530-8410</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-8449-4292</orcidid><orcidid>https://orcid.org/0000-0002-6150-5104</orcidid><orcidid>https://orcid.org/0000-0002-6427-4129</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307342-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2876639735 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cathode interface Cathodes Cobalt oxides Cooling rate co‐sintering Interdiffusion LATP Lithium Lithium-ion batteries Molten salt electrolytes Organic liquids oxide‐based solid electrolytes Room temperature Sintering Solid electrolytes solid‐state batteries Thermal runaway |
title | Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Interface%20Construction%20by%20Rapid%20Sintering%20in%20Solid%E2%80%90State%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Jinhang&rft.date=2024-02-01&rft.volume=20&rft.issue=8&rft.spage=e2307342&rft.epage=n/a&rft.pages=e2307342-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307342&rft_dat=%3Cproquest_cross%3E2876639735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931385246&rft_id=info:pmid/37821410&rfr_iscdi=true |