Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries

Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-02, Vol.20 (8), p.e2307342-n/a
Hauptverfasser: Chen, Jinhang, Chen, Weiyin, Deng, Bing, Li, Bowen, Kittrell, Carter, Tour, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e2307342
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Chen, Jinhang
Chen, Weiyin
Deng, Bing
Li, Bowen
Kittrell, Carter
Tour, James M.
description Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs. Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.
doi_str_mv 10.1002/smll.202307342
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2876639735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876639735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3282-e258a01d6333b29360d3d0fb509dfd3230fc6c994c867cf75267a7d64b7253083</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoznjZupSCGzcdk5w2aZdavAxUBKvrkCapZuhlbFpkdj6Cz-iT2DLjCG5c5UC-851zfoROCJ4RjOmFq8pyRjEFzCGgO2hKGAGfRTTe3dYET9CBcwuMgdCA76MJ8IiSgOApShPZvTbaePO6M20hlfGSpnZd26vONrWXr7xHubTay-wI2PrFs7WXNaXVXx-fWSc7413Jbvwy7gjtFbJ05njzHqLnm-un5M5PH27nyWXqK6AR9Q0NI4mJZgCQ0xgY1qBxkYc41oWG4ZZCMRXHgYoYVwUPKeOSaxbknIaAIzhE52vvsm3eeuM6UVmnTFnK2jS9EzTijEHMIRzQsz_oounbethODJMJRCEN2EDN1pRqG-daU4hlayvZrgTBYsxZjDmLbc5Dw-lG2-eV0Vv8J9gBiNfAuy3N6h-dyO7T9Ff-DVxyiPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931385246</pqid></control><display><type>article</type><title>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Jinhang ; Chen, Weiyin ; Deng, Bing ; Li, Bowen ; Kittrell, Carter ; Tour, James M.</creator><creatorcontrib>Chen, Jinhang ; Chen, Weiyin ; Deng, Bing ; Li, Bowen ; Kittrell, Carter ; Tour, James M.</creatorcontrib><description>Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs. Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307342</identifier><identifier>PMID: 37821410</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>cathode interface ; Cathodes ; Cobalt oxides ; Cooling rate ; co‐sintering ; Interdiffusion ; LATP ; Lithium ; Lithium-ion batteries ; Molten salt electrolytes ; Organic liquids ; oxide‐based solid electrolytes ; Room temperature ; Sintering ; Solid electrolytes ; solid‐state batteries ; Thermal runaway</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307342-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3282-e258a01d6333b29360d3d0fb509dfd3230fc6c994c867cf75267a7d64b7253083</cites><orcidid>0000-0003-0530-8410 ; 0000-0002-8479-9328 ; 0000-0002-8449-4292 ; 0000-0002-6150-5104 ; 0000-0002-6427-4129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202307342$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202307342$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37821410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jinhang</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Kittrell, Carter</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><title>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs. Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.</description><subject>cathode interface</subject><subject>Cathodes</subject><subject>Cobalt oxides</subject><subject>Cooling rate</subject><subject>co‐sintering</subject><subject>Interdiffusion</subject><subject>LATP</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molten salt electrolytes</subject><subject>Organic liquids</subject><subject>oxide‐based solid electrolytes</subject><subject>Room temperature</subject><subject>Sintering</subject><subject>Solid electrolytes</subject><subject>solid‐state batteries</subject><subject>Thermal runaway</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoznjZupSCGzcdk5w2aZdavAxUBKvrkCapZuhlbFpkdj6Cz-iT2DLjCG5c5UC-851zfoROCJ4RjOmFq8pyRjEFzCGgO2hKGAGfRTTe3dYET9CBcwuMgdCA76MJ8IiSgOApShPZvTbaePO6M20hlfGSpnZd26vONrWXr7xHubTay-wI2PrFs7WXNaXVXx-fWSc7413Jbvwy7gjtFbJ05njzHqLnm-un5M5PH27nyWXqK6AR9Q0NI4mJZgCQ0xgY1qBxkYc41oWG4ZZCMRXHgYoYVwUPKeOSaxbknIaAIzhE52vvsm3eeuM6UVmnTFnK2jS9EzTijEHMIRzQsz_oounbethODJMJRCEN2EDN1pRqG-daU4hlayvZrgTBYsxZjDmLbc5Dw-lG2-eV0Vv8J9gBiNfAuy3N6h-dyO7T9Ff-DVxyiPE</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Chen, Jinhang</creator><creator>Chen, Weiyin</creator><creator>Deng, Bing</creator><creator>Li, Bowen</creator><creator>Kittrell, Carter</creator><creator>Tour, James M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0530-8410</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-8449-4292</orcidid><orcidid>https://orcid.org/0000-0002-6150-5104</orcidid><orcidid>https://orcid.org/0000-0002-6427-4129</orcidid></search><sort><creationdate>20240201</creationdate><title>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</title><author>Chen, Jinhang ; Chen, Weiyin ; Deng, Bing ; Li, Bowen ; Kittrell, Carter ; Tour, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3282-e258a01d6333b29360d3d0fb509dfd3230fc6c994c867cf75267a7d64b7253083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cathode interface</topic><topic>Cathodes</topic><topic>Cobalt oxides</topic><topic>Cooling rate</topic><topic>co‐sintering</topic><topic>Interdiffusion</topic><topic>LATP</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molten salt electrolytes</topic><topic>Organic liquids</topic><topic>oxide‐based solid electrolytes</topic><topic>Room temperature</topic><topic>Sintering</topic><topic>Solid electrolytes</topic><topic>solid‐state batteries</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jinhang</creatorcontrib><creatorcontrib>Chen, Weiyin</creatorcontrib><creatorcontrib>Deng, Bing</creatorcontrib><creatorcontrib>Li, Bowen</creatorcontrib><creatorcontrib>Kittrell, Carter</creatorcontrib><creatorcontrib>Tour, James M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jinhang</au><au>Chen, Weiyin</au><au>Deng, Bing</au><au>Li, Bowen</au><au>Kittrell, Carter</au><au>Tour, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>e2307342</spage><epage>n/a</epage><pages>e2307342-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Solid‐state batteries (SSBs) are poised to replace traditional organic liquid‐electrolyte lithium‐ion batteries due to their higher safety and energy density. Oxide‐based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high‐performance in oxide‐based SSBs requires the development of an intimate and robust SE–cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE–cathode interface and provide insight into designing practical SSBs. Using a 10 s rapid sintering method, a thin conductive interphase is constructed between lithium aluminum titanium phosphate and lithium cobalt oxide. This method is used to make solid‐state batteries with thick composite cathodes that demonstrate a high initial capacity of ≈120 mAh g−1 over 200 cycles at room temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37821410</pmid><doi>10.1002/smll.202307342</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0530-8410</orcidid><orcidid>https://orcid.org/0000-0002-8479-9328</orcidid><orcidid>https://orcid.org/0000-0002-8449-4292</orcidid><orcidid>https://orcid.org/0000-0002-6150-5104</orcidid><orcidid>https://orcid.org/0000-0002-6427-4129</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-02, Vol.20 (8), p.e2307342-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2876639735
source Wiley Online Library Journals Frontfile Complete
subjects cathode interface
Cathodes
Cobalt oxides
Cooling rate
co‐sintering
Interdiffusion
LATP
Lithium
Lithium-ion batteries
Molten salt electrolytes
Organic liquids
oxide‐based solid electrolytes
Room temperature
Sintering
Solid electrolytes
solid‐state batteries
Thermal runaway
title Cathode Interface Construction by Rapid Sintering in Solid‐State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cathode%20Interface%20Construction%20by%20Rapid%20Sintering%20in%20Solid%E2%80%90State%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chen,%20Jinhang&rft.date=2024-02-01&rft.volume=20&rft.issue=8&rft.spage=e2307342&rft.epage=n/a&rft.pages=e2307342-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307342&rft_dat=%3Cproquest_cross%3E2876639735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931385246&rft_id=info:pmid/37821410&rfr_iscdi=true