Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer

This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2023-12, Vol.44 (24), p.e2300424-n/a
Hauptverfasser: Reizabal, Ander, Devlin, Brenna L., Paxton, Naomi C., Saiz, Paula G., Liashenko, Ievgenii, Luposchainsky, Simon, Woodruff, Maria A., Lanceros‐Mendez, Senentxu, Dalton, Paul D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page e2300424
container_title Macromolecular rapid communications.
container_volume 44
creator Reizabal, Ander
Devlin, Brenna L.
Paxton, Naomi C.
Saiz, Paula G.
Liashenko, Ievgenii
Luposchainsky, Simon
Woodruff, Maria A.
Lanceros‐Mendez, Senentxu
Dalton, Paul D.
description This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples. This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.
doi_str_mv 10.1002/marc.202300424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2876636419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876636419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</originalsourceid><addsrcrecordid>eNqFkE1vFDEMhiMEoqVw5YgiceEyi2PPV47VtnxI3RbxcY4yGQdSzc4syaxWe-Mn8Bv5JWS1pUhcONmSH7-yHyGeK1goAHy9ttEtEJAASiwfiFNVoSpIY_Mw94BYKKL6RDxJ6RYA2hLwsTihpkUFWp2K6xUPs7wc2M1x2sUwh_GrnLy83g_T-OvHT4VyFVycfOg4JrkL8zdpR3mz4cP007SNjiVdyA8xjDPHp-KRt0PiZ3f1THx5c_l5-a64unn7fnl-VThqqCxaW2lC7mpC7L13HfWeSkLntKup6y0D-rKqdIXOl5qprWxda1La9qysojPx6pi7idP3LafZrENyPAx25GmbDLZNXVNdKp3Rl_-gt_nqMV9nUAMhKGiaTC2OVP41pcjebGLIcvdGgTmYNgfT5t50XnhxF7vt1tzf43_UZkAfgV0YeP-fOLM6_7j8G_4bol6KYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903201077</pqid></control><display><type>article</type><title>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Reizabal, Ander ; Devlin, Brenna L. ; Paxton, Naomi C. ; Saiz, Paula G. ; Liashenko, Ievgenii ; Luposchainsky, Simon ; Woodruff, Maria A. ; Lanceros‐Mendez, Senentxu ; Dalton, Paul D.</creator><creatorcontrib>Reizabal, Ander ; Devlin, Brenna L. ; Paxton, Naomi C. ; Saiz, Paula G. ; Liashenko, Ievgenii ; Luposchainsky, Simon ; Woodruff, Maria A. ; Lanceros‐Mendez, Senentxu ; Dalton, Paul D.</creatorcontrib><description>This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples. This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202300424</identifier><identifier>PMID: 37821091</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Annealing ; cylindrical scaffolds ; Design defects ; Design optimization ; Diameters ; Elastic limit ; electrohydrodynamic printing ; Elongation ; Fibers ; heated collectors ; Mechanical properties ; melt electrospinning writing ; Melt temperature ; Melting ; Melting point ; Melting points ; Microfibers ; Modulus of elasticity ; Nylon ; Nylons ; Polymers ; Process parameters ; Tensile strength ; Tensile tests ; Thermal analysis ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds ; Tubes ; Voron printers</subject><ispartof>Macromolecular rapid communications., 2023-12, Vol.44 (24), p.e2300424-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</citedby><cites>FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</cites><orcidid>0000-0001-9602-4151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.202300424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.202300424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37821091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reizabal, Ander</creatorcontrib><creatorcontrib>Devlin, Brenna L.</creatorcontrib><creatorcontrib>Paxton, Naomi C.</creatorcontrib><creatorcontrib>Saiz, Paula G.</creatorcontrib><creatorcontrib>Liashenko, Ievgenii</creatorcontrib><creatorcontrib>Luposchainsky, Simon</creatorcontrib><creatorcontrib>Woodruff, Maria A.</creatorcontrib><creatorcontrib>Lanceros‐Mendez, Senentxu</creatorcontrib><creatorcontrib>Dalton, Paul D.</creatorcontrib><title>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples. This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.</description><subject>Annealing</subject><subject>cylindrical scaffolds</subject><subject>Design defects</subject><subject>Design optimization</subject><subject>Diameters</subject><subject>Elastic limit</subject><subject>electrohydrodynamic printing</subject><subject>Elongation</subject><subject>Fibers</subject><subject>heated collectors</subject><subject>Mechanical properties</subject><subject>melt electrospinning writing</subject><subject>Melt temperature</subject><subject>Melting</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Microfibers</subject><subject>Modulus of elasticity</subject><subject>Nylon</subject><subject>Nylons</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Tubes</subject><subject>Voron printers</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1vFDEMhiMEoqVw5YgiceEyi2PPV47VtnxI3RbxcY4yGQdSzc4syaxWe-Mn8Bv5JWS1pUhcONmSH7-yHyGeK1goAHy9ttEtEJAASiwfiFNVoSpIY_Mw94BYKKL6RDxJ6RYA2hLwsTihpkUFWp2K6xUPs7wc2M1x2sUwh_GrnLy83g_T-OvHT4VyFVycfOg4JrkL8zdpR3mz4cP007SNjiVdyA8xjDPHp-KRt0PiZ3f1THx5c_l5-a64unn7fnl-VThqqCxaW2lC7mpC7L13HfWeSkLntKup6y0D-rKqdIXOl5qprWxda1La9qysojPx6pi7idP3LafZrENyPAx25GmbDLZNXVNdKp3Rl_-gt_nqMV9nUAMhKGiaTC2OVP41pcjebGLIcvdGgTmYNgfT5t50XnhxF7vt1tzf43_UZkAfgV0YeP-fOLM6_7j8G_4bol6KYQ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Reizabal, Ander</creator><creator>Devlin, Brenna L.</creator><creator>Paxton, Naomi C.</creator><creator>Saiz, Paula G.</creator><creator>Liashenko, Ievgenii</creator><creator>Luposchainsky, Simon</creator><creator>Woodruff, Maria A.</creator><creator>Lanceros‐Mendez, Senentxu</creator><creator>Dalton, Paul D.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9602-4151</orcidid></search><sort><creationdate>202312</creationdate><title>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</title><author>Reizabal, Ander ; Devlin, Brenna L. ; Paxton, Naomi C. ; Saiz, Paula G. ; Liashenko, Ievgenii ; Luposchainsky, Simon ; Woodruff, Maria A. ; Lanceros‐Mendez, Senentxu ; Dalton, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>cylindrical scaffolds</topic><topic>Design defects</topic><topic>Design optimization</topic><topic>Diameters</topic><topic>Elastic limit</topic><topic>electrohydrodynamic printing</topic><topic>Elongation</topic><topic>Fibers</topic><topic>heated collectors</topic><topic>Mechanical properties</topic><topic>melt electrospinning writing</topic><topic>Melt temperature</topic><topic>Melting</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Microfibers</topic><topic>Modulus of elasticity</topic><topic>Nylon</topic><topic>Nylons</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Tubes</topic><topic>Voron printers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reizabal, Ander</creatorcontrib><creatorcontrib>Devlin, Brenna L.</creatorcontrib><creatorcontrib>Paxton, Naomi C.</creatorcontrib><creatorcontrib>Saiz, Paula G.</creatorcontrib><creatorcontrib>Liashenko, Ievgenii</creatorcontrib><creatorcontrib>Luposchainsky, Simon</creatorcontrib><creatorcontrib>Woodruff, Maria A.</creatorcontrib><creatorcontrib>Lanceros‐Mendez, Senentxu</creatorcontrib><creatorcontrib>Dalton, Paul D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reizabal, Ander</au><au>Devlin, Brenna L.</au><au>Paxton, Naomi C.</au><au>Saiz, Paula G.</au><au>Liashenko, Ievgenii</au><au>Luposchainsky, Simon</au><au>Woodruff, Maria A.</au><au>Lanceros‐Mendez, Senentxu</au><au>Dalton, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2023-12</date><risdate>2023</risdate><volume>44</volume><issue>24</issue><spage>e2300424</spage><epage>n/a</epage><pages>e2300424-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples. This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37821091</pmid><doi>10.1002/marc.202300424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9602-4151</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2023-12, Vol.44 (24), p.e2300424-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2876636419
source MEDLINE; Access via Wiley Online Library
subjects Annealing
cylindrical scaffolds
Design defects
Design optimization
Diameters
Elastic limit
electrohydrodynamic printing
Elongation
Fibers
heated collectors
Mechanical properties
melt electrospinning writing
Melt temperature
Melting
Melting point
Melting points
Microfibers
Modulus of elasticity
Nylon
Nylons
Polymers
Process parameters
Tensile strength
Tensile tests
Thermal analysis
Three dimensional printing
Tissue Engineering
Tissue Scaffolds
Tubes
Voron printers
title Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melt%20Electrowriting%20of%20Nylon%E2%80%9012%20Microfibers%20with%20an%20Open%E2%80%90Source%203D%20Printer&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Reizabal,%20Ander&rft.date=2023-12&rft.volume=44&rft.issue=24&rft.spage=e2300424&rft.epage=n/a&rft.pages=e2300424-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202300424&rft_dat=%3Cproquest_cross%3E2876636419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903201077&rft_id=info:pmid/37821091&rfr_iscdi=true