Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer
This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, prod...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2023-12, Vol.44 (24), p.e2300424-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | e2300424 |
container_title | Macromolecular rapid communications. |
container_volume | 44 |
creator | Reizabal, Ander Devlin, Brenna L. Paxton, Naomi C. Saiz, Paula G. Liashenko, Ievgenii Luposchainsky, Simon Woodruff, Maria A. Lanceros‐Mendez, Senentxu Dalton, Paul D. |
description | This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.
This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research. |
doi_str_mv | 10.1002/marc.202300424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2876636419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876636419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</originalsourceid><addsrcrecordid>eNqFkE1vFDEMhiMEoqVw5YgiceEyi2PPV47VtnxI3RbxcY4yGQdSzc4syaxWe-Mn8Bv5JWS1pUhcONmSH7-yHyGeK1goAHy9ttEtEJAASiwfiFNVoSpIY_Mw94BYKKL6RDxJ6RYA2hLwsTihpkUFWp2K6xUPs7wc2M1x2sUwh_GrnLy83g_T-OvHT4VyFVycfOg4JrkL8zdpR3mz4cP007SNjiVdyA8xjDPHp-KRt0PiZ3f1THx5c_l5-a64unn7fnl-VThqqCxaW2lC7mpC7L13HfWeSkLntKup6y0D-rKqdIXOl5qprWxda1La9qysojPx6pi7idP3LafZrENyPAx25GmbDLZNXVNdKp3Rl_-gt_nqMV9nUAMhKGiaTC2OVP41pcjebGLIcvdGgTmYNgfT5t50XnhxF7vt1tzf43_UZkAfgV0YeP-fOLM6_7j8G_4bol6KYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903201077</pqid></control><display><type>article</type><title>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Reizabal, Ander ; Devlin, Brenna L. ; Paxton, Naomi C. ; Saiz, Paula G. ; Liashenko, Ievgenii ; Luposchainsky, Simon ; Woodruff, Maria A. ; Lanceros‐Mendez, Senentxu ; Dalton, Paul D.</creator><creatorcontrib>Reizabal, Ander ; Devlin, Brenna L. ; Paxton, Naomi C. ; Saiz, Paula G. ; Liashenko, Ievgenii ; Luposchainsky, Simon ; Woodruff, Maria A. ; Lanceros‐Mendez, Senentxu ; Dalton, Paul D.</creatorcontrib><description>This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.
This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202300424</identifier><identifier>PMID: 37821091</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Annealing ; cylindrical scaffolds ; Design defects ; Design optimization ; Diameters ; Elastic limit ; electrohydrodynamic printing ; Elongation ; Fibers ; heated collectors ; Mechanical properties ; melt electrospinning writing ; Melt temperature ; Melting ; Melting point ; Melting points ; Microfibers ; Modulus of elasticity ; Nylon ; Nylons ; Polymers ; Process parameters ; Tensile strength ; Tensile tests ; Thermal analysis ; Three dimensional printing ; Tissue Engineering ; Tissue Scaffolds ; Tubes ; Voron printers</subject><ispartof>Macromolecular rapid communications., 2023-12, Vol.44 (24), p.e2300424-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</citedby><cites>FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</cites><orcidid>0000-0001-9602-4151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.202300424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.202300424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37821091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reizabal, Ander</creatorcontrib><creatorcontrib>Devlin, Brenna L.</creatorcontrib><creatorcontrib>Paxton, Naomi C.</creatorcontrib><creatorcontrib>Saiz, Paula G.</creatorcontrib><creatorcontrib>Liashenko, Ievgenii</creatorcontrib><creatorcontrib>Luposchainsky, Simon</creatorcontrib><creatorcontrib>Woodruff, Maria A.</creatorcontrib><creatorcontrib>Lanceros‐Mendez, Senentxu</creatorcontrib><creatorcontrib>Dalton, Paul D.</creatorcontrib><title>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.
This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.</description><subject>Annealing</subject><subject>cylindrical scaffolds</subject><subject>Design defects</subject><subject>Design optimization</subject><subject>Diameters</subject><subject>Elastic limit</subject><subject>electrohydrodynamic printing</subject><subject>Elongation</subject><subject>Fibers</subject><subject>heated collectors</subject><subject>Mechanical properties</subject><subject>melt electrospinning writing</subject><subject>Melt temperature</subject><subject>Melting</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Microfibers</subject><subject>Modulus of elasticity</subject><subject>Nylon</subject><subject>Nylons</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><subject>Three dimensional printing</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Tubes</subject><subject>Voron printers</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1vFDEMhiMEoqVw5YgiceEyi2PPV47VtnxI3RbxcY4yGQdSzc4syaxWe-Mn8Bv5JWS1pUhcONmSH7-yHyGeK1goAHy9ttEtEJAASiwfiFNVoSpIY_Mw94BYKKL6RDxJ6RYA2hLwsTihpkUFWp2K6xUPs7wc2M1x2sUwh_GrnLy83g_T-OvHT4VyFVycfOg4JrkL8zdpR3mz4cP007SNjiVdyA8xjDPHp-KRt0PiZ3f1THx5c_l5-a64unn7fnl-VThqqCxaW2lC7mpC7L13HfWeSkLntKup6y0D-rKqdIXOl5qprWxda1La9qysojPx6pi7idP3LafZrENyPAx25GmbDLZNXVNdKp3Rl_-gt_nqMV9nUAMhKGiaTC2OVP41pcjebGLIcvdGgTmYNgfT5t50XnhxF7vt1tzf43_UZkAfgV0YeP-fOLM6_7j8G_4bol6KYQ</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Reizabal, Ander</creator><creator>Devlin, Brenna L.</creator><creator>Paxton, Naomi C.</creator><creator>Saiz, Paula G.</creator><creator>Liashenko, Ievgenii</creator><creator>Luposchainsky, Simon</creator><creator>Woodruff, Maria A.</creator><creator>Lanceros‐Mendez, Senentxu</creator><creator>Dalton, Paul D.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9602-4151</orcidid></search><sort><creationdate>202312</creationdate><title>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</title><author>Reizabal, Ander ; Devlin, Brenna L. ; Paxton, Naomi C. ; Saiz, Paula G. ; Liashenko, Ievgenii ; Luposchainsky, Simon ; Woodruff, Maria A. ; Lanceros‐Mendez, Senentxu ; Dalton, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3734-8a5932eb6322dffcb3df3432cc9c63bdae02f455952cf49e385a669319ade1a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>cylindrical scaffolds</topic><topic>Design defects</topic><topic>Design optimization</topic><topic>Diameters</topic><topic>Elastic limit</topic><topic>electrohydrodynamic printing</topic><topic>Elongation</topic><topic>Fibers</topic><topic>heated collectors</topic><topic>Mechanical properties</topic><topic>melt electrospinning writing</topic><topic>Melt temperature</topic><topic>Melting</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Microfibers</topic><topic>Modulus of elasticity</topic><topic>Nylon</topic><topic>Nylons</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><topic>Three dimensional printing</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Tubes</topic><topic>Voron printers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reizabal, Ander</creatorcontrib><creatorcontrib>Devlin, Brenna L.</creatorcontrib><creatorcontrib>Paxton, Naomi C.</creatorcontrib><creatorcontrib>Saiz, Paula G.</creatorcontrib><creatorcontrib>Liashenko, Ievgenii</creatorcontrib><creatorcontrib>Luposchainsky, Simon</creatorcontrib><creatorcontrib>Woodruff, Maria A.</creatorcontrib><creatorcontrib>Lanceros‐Mendez, Senentxu</creatorcontrib><creatorcontrib>Dalton, Paul D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reizabal, Ander</au><au>Devlin, Brenna L.</au><au>Paxton, Naomi C.</au><au>Saiz, Paula G.</au><au>Liashenko, Ievgenii</au><au>Luposchainsky, Simon</au><au>Woodruff, Maria A.</au><au>Lanceros‐Mendez, Senentxu</au><au>Dalton, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2023-12</date><risdate>2023</risdate><volume>44</volume><issue>24</issue><spage>e2300424</spage><epage>n/a</epage><pages>e2300424-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>This study demonstrates how either a heated flat or cylindrical collector enables defect‐free melt electrowriting (MEW) of complex geometries from high melting temperature polymers. The open‐source “MEWron” printer uses nylon‐12 filament and combined with a heated flat or cylindrical collector, produces well‐defined fibers with diameters ranging from 33 ± 4 to 95 ± 3 µm. Processing parameters for stable jet formation and minimal defects based on COMSOL thermal modeling for hardware design are optimized. The balance of processing temperature and collector temperature is achieved to achieve auxetic patterns, while showing that annealing nylon‐12 tubes significantly alters their mechanical properties. The samples exhibit varied pore sizes and wall thicknesses influenced by jet dynamics and fiber bridging. Tensile testing shows nylon‐12 tubes are notably stronger than poly(ε‐caprolactone) ones and while annealing has limited impact on tensile strength, yield, and elastic modulus, it dramatically reduces elongation. The equipment described and material used broadens MEW applications for high melting point polymers and highlights the importance of cooling dynamics for reproducible samples.
This study highlights the capabilities of a modified 3D printer known as the MEWron, specifically in its application with high‐temperature polymers, exemplified here with nylon‐12. Employing a heated collector (flat or tubular), this research successfully generates defect‐free structures in a variety of distinct fiber morphologies. The utilization of melt electrowriting for high‐temperature materials enables diverse applications beyond biomedical research.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37821091</pmid><doi>10.1002/marc.202300424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9602-4151</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2023-12, Vol.44 (24), p.e2300424-n/a |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_2876636419 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Annealing cylindrical scaffolds Design defects Design optimization Diameters Elastic limit electrohydrodynamic printing Elongation Fibers heated collectors Mechanical properties melt electrospinning writing Melt temperature Melting Melting point Melting points Microfibers Modulus of elasticity Nylon Nylons Polymers Process parameters Tensile strength Tensile tests Thermal analysis Three dimensional printing Tissue Engineering Tissue Scaffolds Tubes Voron printers |
title | Melt Electrowriting of Nylon‐12 Microfibers with an Open‐Source 3D Printer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melt%20Electrowriting%20of%20Nylon%E2%80%9012%20Microfibers%20with%20an%20Open%E2%80%90Source%203D%20Printer&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Reizabal,%20Ander&rft.date=2023-12&rft.volume=44&rft.issue=24&rft.spage=e2300424&rft.epage=n/a&rft.pages=e2300424-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202300424&rft_dat=%3Cproquest_cross%3E2876636419%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903201077&rft_id=info:pmid/37821091&rfr_iscdi=true |