Vasorelaxant effect of (E,E)-farnesol in human umbilical vein ex vivo assays
(E,E)-farnesol is a sesquiterpene acyclic alcohol produced by bacteria, protozoa, fungi, plants, and animals. The literature describes its applications in food, pharmaceutical, and cosmetic industries, and also in the pharmacological context with a vasorelaxant effect. However, its effects on human...
Gespeichert in:
Veröffentlicht in: | Chemico-biological interactions 2023-12, Vol.386, p.110746-110746, Article 110746 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | (E,E)-farnesol is a sesquiterpene acyclic alcohol produced by bacteria, protozoa, fungi, plants, and animals. The literature describes its applications in food, pharmaceutical, and cosmetic industries, and also in the pharmacological context with a vasorelaxant effect. However, its effects on human umbilical vessels remain poorly investigated. Thus, this study aims to investigate, in a new way, the vasorelaxant effect of (E,E)-farnesol in human umbilical veins (HUV) from healthy donors. Rings obtained from isolated HUV were suspended in an organ bath to record their isometric tension in different experimental sections. (E,E)-farnesol (1 μmol/L to 1 mmol/L) promoted vasorelaxant effect in venous preparations contracted by depolarization (KCl 60 mmol/L) or pharmacological agonism (5-HT 10 μmol/L), with EC50 values of 239.9 μmol/L and 424 μmol/L, respectively. In calcium-free solution, this effect was also observable. (E,E)-farnesol was able to suppress contractions evoked by CaCl2 and BaCl2 suggesting a blockade of voltage-dependent (especially L-type) calcium channels. The vasorelaxant efficacy and potency of (E,E)-farnesol was affected in the presence of tetraethylammonium (1 and 10 mmol/L), glibenclamide (10 μmol/L) and BaCl2 (1 mmol/L) indicating a possible involvement of potassium channels (BKCa, KATP and KIR) in this effect. Our data suggest that (E,E)-farnesol has a promising potential to be applicable as a vasodilator in hypertensive conditions in pregnancy that alter HUV reactivity.
•(E,E)-farnesol inhibits electromechanical coupling in human umbilical veins.•(E,E)-farnesol inhibits pharmacomechanical coupling in human umbilical veins.•Relaxant effect of (E,E)-farnesol involves inhibition of L-type calcium channels.•Relaxant effect of (E,E)-farnesol involves opening of potassium channels. |
---|---|
ISSN: | 0009-2797 1872-7786 |
DOI: | 10.1016/j.cbi.2023.110746 |