Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning

Remitted psychotic depression (MDDPsy) has heterogeneity of outcome. The study's aims were to identify subgroups of persons with remitted MDDPsy with distinct trajectories of depression severity during continuation treatment and to detect predictors of membership to the worsening trajectory. On...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological medicine 2024-04, Vol.54 (6), p.1142-1151
Hauptverfasser: Banerjee, Samprit, Wu, Yiyuan, Bingham, Kathleen S, Marino, Patricia, Meyers, Barnett S, Mulsant, Benoit H, Neufeld, Nicholas H, Oliver, Lindsay D, Power, Jonathan D, Rothschild, Anthony J, Sirey, Jo Anne, Voineskos, Aristotle N, Whyte, Ellen M, Alexopoulos, George S, Flint, Alastair J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1151
container_issue 6
container_start_page 1142
container_title Psychological medicine
container_volume 54
creator Banerjee, Samprit
Wu, Yiyuan
Bingham, Kathleen S
Marino, Patricia
Meyers, Barnett S
Mulsant, Benoit H
Neufeld, Nicholas H
Oliver, Lindsay D
Power, Jonathan D
Rothschild, Anthony J
Sirey, Jo Anne
Voineskos, Aristotle N
Whyte, Ellen M
Alexopoulos, George S
Flint, Alastair J
description Remitted psychotic depression (MDDPsy) has heterogeneity of outcome. The study's aims were to identify subgroups of persons with remitted MDDPsy with distinct trajectories of depression severity during continuation treatment and to detect predictors of membership to the worsening trajectory. One hundred and twenty-six persons aged 18-85 years participated in a 36-week randomized placebo-controlled trial (RCT) that examined the clinical effects of continuing olanzapine once an episode of MDDPsy had remitted with sertraline plus olanzapine. Latent class mixed modeling was used to identify subgroups of participants with distinct trajectories of depression severity during the RCT. Machine learning was used to predict membership to the trajectories based on participant pre-trajectory characteristics. Seventy-one (56.3%) participants belonged to a subgroup with a stable trajectory of depression scores and 55 (43.7%) belonged to a subgroup with a worsening trajectory. A random forest model with high prediction accuracy (AUC of 0.812) found that the strongest predictors of membership to the worsening subgroup were residual depression symptoms at onset of remission, followed by anxiety score at RCT baseline and age of onset of the first lifetime depressive episode. In a logistic regression model that examined depression score at onset of remission as the only predictor variable, the AUC (0.778) was close to that of the machine learning model. Residual depression at onset of remission has high accuracy in predicting membership to worsening outcome of remitted MDDPsy. Research is needed to determine how best to optimize the outcome of psychotic MDDPsy with residual symptoms.
doi_str_mv 10.1017/S0033291723002945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2875851482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030972018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-c0be015dd6d12af3d21e13de1ed525599e60192727cfc3571b235f53a6a582b73</originalsourceid><addsrcrecordid>eNplUclOwzAQtRCIlsIHcEGRuHAJeOw4drihik2qxIFyjhx7Ql1lKXYi1L8noYUDnJ5m3qLRPELOgV4DBXnzSinnLAPJOKUsS8QBmUKSZrHKpDok05GOR35CTkJYUwocEnZMJlwqUKlIp6Raer1G07XeYYjaMvJYu65DG23C1qzazpnI4sZjCK5tbiNnselc6Yzuhnk0DJx1Y8C3_XNAbFzzHhXbqNZm5RqMKtR-3J2So1JXAc_2OCNvD_fL-VO8eHl8nt8tYsNZ0sWGFkhBWJtaYLrklgECtwhoBRMiyzClkDHJpCkNFxIKxkUpuE61UKyQfEaudrkb3370GLq8dsFgVekG2z7kTEmhBCSKDdLLP9J12_tmuC7nlNNMMgpqUMFOZXwbgscy33hXa7_NgeZjFfm_KgbPxT65L2q0v46f3_MvS0GEnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030972018</pqid></control><display><type>article</type><title>Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>MEDLINE</source><source>Cambridge University Press Journals Complete</source><creator>Banerjee, Samprit ; Wu, Yiyuan ; Bingham, Kathleen S ; Marino, Patricia ; Meyers, Barnett S ; Mulsant, Benoit H ; Neufeld, Nicholas H ; Oliver, Lindsay D ; Power, Jonathan D ; Rothschild, Anthony J ; Sirey, Jo Anne ; Voineskos, Aristotle N ; Whyte, Ellen M ; Alexopoulos, George S ; Flint, Alastair J</creator><creatorcontrib>Banerjee, Samprit ; Wu, Yiyuan ; Bingham, Kathleen S ; Marino, Patricia ; Meyers, Barnett S ; Mulsant, Benoit H ; Neufeld, Nicholas H ; Oliver, Lindsay D ; Power, Jonathan D ; Rothschild, Anthony J ; Sirey, Jo Anne ; Voineskos, Aristotle N ; Whyte, Ellen M ; Alexopoulos, George S ; Flint, Alastair J ; STOP-PD II Study Group</creatorcontrib><description>Remitted psychotic depression (MDDPsy) has heterogeneity of outcome. The study's aims were to identify subgroups of persons with remitted MDDPsy with distinct trajectories of depression severity during continuation treatment and to detect predictors of membership to the worsening trajectory. One hundred and twenty-six persons aged 18-85 years participated in a 36-week randomized placebo-controlled trial (RCT) that examined the clinical effects of continuing olanzapine once an episode of MDDPsy had remitted with sertraline plus olanzapine. Latent class mixed modeling was used to identify subgroups of participants with distinct trajectories of depression severity during the RCT. Machine learning was used to predict membership to the trajectories based on participant pre-trajectory characteristics. Seventy-one (56.3%) participants belonged to a subgroup with a stable trajectory of depression scores and 55 (43.7%) belonged to a subgroup with a worsening trajectory. A random forest model with high prediction accuracy (AUC of 0.812) found that the strongest predictors of membership to the worsening subgroup were residual depression symptoms at onset of remission, followed by anxiety score at RCT baseline and age of onset of the first lifetime depressive episode. In a logistic regression model that examined depression score at onset of remission as the only predictor variable, the AUC (0.778) was close to that of the machine learning model. Residual depression at onset of remission has high accuracy in predicting membership to worsening outcome of remitted MDDPsy. Research is needed to determine how best to optimize the outcome of psychotic MDDPsy with residual symptoms.</description><identifier>ISSN: 0033-2917</identifier><identifier>ISSN: 1469-8978</identifier><identifier>EISSN: 1469-8978</identifier><identifier>DOI: 10.1017/S0033291723002945</identifier><identifier>PMID: 37818656</identifier><language>eng</language><publisher>England: Cambridge University Press</publisher><subject>Accuracy ; Age of onset ; Clinical trials ; Delusions ; Depression ; Depressive Disorder, Major - diagnosis ; Depressive Disorder, Major - drug therapy ; Drug dosages ; Hallucinations ; Humans ; Learning algorithms ; Machine learning ; Membership ; Mental depression ; Olanzapine ; Olanzapine - therapeutic use ; Psychosis ; Psychotic Disorders - drug therapy ; Psychotic symptoms ; Remission ; Remission (Medicine) ; Residual symptoms ; Sertraline ; Sertraline - therapeutic use</subject><ispartof>Psychological medicine, 2024-04, Vol.54 (6), p.1142-1151</ispartof><rights>Copyright © The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-c0be015dd6d12af3d21e13de1ed525599e60192727cfc3571b235f53a6a582b73</cites><orcidid>0000-0001-6806-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,12827,27903,27904,30978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37818656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Samprit</creatorcontrib><creatorcontrib>Wu, Yiyuan</creatorcontrib><creatorcontrib>Bingham, Kathleen S</creatorcontrib><creatorcontrib>Marino, Patricia</creatorcontrib><creatorcontrib>Meyers, Barnett S</creatorcontrib><creatorcontrib>Mulsant, Benoit H</creatorcontrib><creatorcontrib>Neufeld, Nicholas H</creatorcontrib><creatorcontrib>Oliver, Lindsay D</creatorcontrib><creatorcontrib>Power, Jonathan D</creatorcontrib><creatorcontrib>Rothschild, Anthony J</creatorcontrib><creatorcontrib>Sirey, Jo Anne</creatorcontrib><creatorcontrib>Voineskos, Aristotle N</creatorcontrib><creatorcontrib>Whyte, Ellen M</creatorcontrib><creatorcontrib>Alexopoulos, George S</creatorcontrib><creatorcontrib>Flint, Alastair J</creatorcontrib><creatorcontrib>STOP-PD II Study Group</creatorcontrib><title>Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning</title><title>Psychological medicine</title><addtitle>Psychol Med</addtitle><description>Remitted psychotic depression (MDDPsy) has heterogeneity of outcome. The study's aims were to identify subgroups of persons with remitted MDDPsy with distinct trajectories of depression severity during continuation treatment and to detect predictors of membership to the worsening trajectory. One hundred and twenty-six persons aged 18-85 years participated in a 36-week randomized placebo-controlled trial (RCT) that examined the clinical effects of continuing olanzapine once an episode of MDDPsy had remitted with sertraline plus olanzapine. Latent class mixed modeling was used to identify subgroups of participants with distinct trajectories of depression severity during the RCT. Machine learning was used to predict membership to the trajectories based on participant pre-trajectory characteristics. Seventy-one (56.3%) participants belonged to a subgroup with a stable trajectory of depression scores and 55 (43.7%) belonged to a subgroup with a worsening trajectory. A random forest model with high prediction accuracy (AUC of 0.812) found that the strongest predictors of membership to the worsening subgroup were residual depression symptoms at onset of remission, followed by anxiety score at RCT baseline and age of onset of the first lifetime depressive episode. In a logistic regression model that examined depression score at onset of remission as the only predictor variable, the AUC (0.778) was close to that of the machine learning model. Residual depression at onset of remission has high accuracy in predicting membership to worsening outcome of remitted MDDPsy. Research is needed to determine how best to optimize the outcome of psychotic MDDPsy with residual symptoms.</description><subject>Accuracy</subject><subject>Age of onset</subject><subject>Clinical trials</subject><subject>Delusions</subject><subject>Depression</subject><subject>Depressive Disorder, Major - diagnosis</subject><subject>Depressive Disorder, Major - drug therapy</subject><subject>Drug dosages</subject><subject>Hallucinations</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Membership</subject><subject>Mental depression</subject><subject>Olanzapine</subject><subject>Olanzapine - therapeutic use</subject><subject>Psychosis</subject><subject>Psychotic Disorders - drug therapy</subject><subject>Psychotic symptoms</subject><subject>Remission</subject><subject>Remission (Medicine)</subject><subject>Residual symptoms</subject><subject>Sertraline</subject><subject>Sertraline - therapeutic use</subject><issn>0033-2917</issn><issn>1469-8978</issn><issn>1469-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUclOwzAQtRCIlsIHcEGRuHAJeOw4drihik2qxIFyjhx7Ql1lKXYi1L8noYUDnJ5m3qLRPELOgV4DBXnzSinnLAPJOKUsS8QBmUKSZrHKpDok05GOR35CTkJYUwocEnZMJlwqUKlIp6Raer1G07XeYYjaMvJYu65DG23C1qzazpnI4sZjCK5tbiNnselc6Yzuhnk0DJx1Y8C3_XNAbFzzHhXbqNZm5RqMKtR-3J2So1JXAc_2OCNvD_fL-VO8eHl8nt8tYsNZ0sWGFkhBWJtaYLrklgECtwhoBRMiyzClkDHJpCkNFxIKxkUpuE61UKyQfEaudrkb3370GLq8dsFgVekG2z7kTEmhBCSKDdLLP9J12_tmuC7nlNNMMgpqUMFOZXwbgscy33hXa7_NgeZjFfm_KgbPxT65L2q0v46f3_MvS0GEnw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Banerjee, Samprit</creator><creator>Wu, Yiyuan</creator><creator>Bingham, Kathleen S</creator><creator>Marino, Patricia</creator><creator>Meyers, Barnett S</creator><creator>Mulsant, Benoit H</creator><creator>Neufeld, Nicholas H</creator><creator>Oliver, Lindsay D</creator><creator>Power, Jonathan D</creator><creator>Rothschild, Anthony J</creator><creator>Sirey, Jo Anne</creator><creator>Voineskos, Aristotle N</creator><creator>Whyte, Ellen M</creator><creator>Alexopoulos, George S</creator><creator>Flint, Alastair J</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HEHIP</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6806-0235</orcidid></search><sort><creationdate>20240401</creationdate><title>Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning</title><author>Banerjee, Samprit ; Wu, Yiyuan ; Bingham, Kathleen S ; Marino, Patricia ; Meyers, Barnett S ; Mulsant, Benoit H ; Neufeld, Nicholas H ; Oliver, Lindsay D ; Power, Jonathan D ; Rothschild, Anthony J ; Sirey, Jo Anne ; Voineskos, Aristotle N ; Whyte, Ellen M ; Alexopoulos, George S ; Flint, Alastair J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-c0be015dd6d12af3d21e13de1ed525599e60192727cfc3571b235f53a6a582b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Age of onset</topic><topic>Clinical trials</topic><topic>Delusions</topic><topic>Depression</topic><topic>Depressive Disorder, Major - diagnosis</topic><topic>Depressive Disorder, Major - drug therapy</topic><topic>Drug dosages</topic><topic>Hallucinations</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Membership</topic><topic>Mental depression</topic><topic>Olanzapine</topic><topic>Olanzapine - therapeutic use</topic><topic>Psychosis</topic><topic>Psychotic Disorders - drug therapy</topic><topic>Psychotic symptoms</topic><topic>Remission</topic><topic>Remission (Medicine)</topic><topic>Residual symptoms</topic><topic>Sertraline</topic><topic>Sertraline - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Samprit</creatorcontrib><creatorcontrib>Wu, Yiyuan</creatorcontrib><creatorcontrib>Bingham, Kathleen S</creatorcontrib><creatorcontrib>Marino, Patricia</creatorcontrib><creatorcontrib>Meyers, Barnett S</creatorcontrib><creatorcontrib>Mulsant, Benoit H</creatorcontrib><creatorcontrib>Neufeld, Nicholas H</creatorcontrib><creatorcontrib>Oliver, Lindsay D</creatorcontrib><creatorcontrib>Power, Jonathan D</creatorcontrib><creatorcontrib>Rothschild, Anthony J</creatorcontrib><creatorcontrib>Sirey, Jo Anne</creatorcontrib><creatorcontrib>Voineskos, Aristotle N</creatorcontrib><creatorcontrib>Whyte, Ellen M</creatorcontrib><creatorcontrib>Alexopoulos, George S</creatorcontrib><creatorcontrib>Flint, Alastair J</creatorcontrib><creatorcontrib>STOP-PD II Study Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Sociology Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychological medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Samprit</au><au>Wu, Yiyuan</au><au>Bingham, Kathleen S</au><au>Marino, Patricia</au><au>Meyers, Barnett S</au><au>Mulsant, Benoit H</au><au>Neufeld, Nicholas H</au><au>Oliver, Lindsay D</au><au>Power, Jonathan D</au><au>Rothschild, Anthony J</au><au>Sirey, Jo Anne</au><au>Voineskos, Aristotle N</au><au>Whyte, Ellen M</au><au>Alexopoulos, George S</au><au>Flint, Alastair J</au><aucorp>STOP-PD II Study Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning</atitle><jtitle>Psychological medicine</jtitle><addtitle>Psychol Med</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>54</volume><issue>6</issue><spage>1142</spage><epage>1151</epage><pages>1142-1151</pages><issn>0033-2917</issn><issn>1469-8978</issn><eissn>1469-8978</eissn><abstract>Remitted psychotic depression (MDDPsy) has heterogeneity of outcome. The study's aims were to identify subgroups of persons with remitted MDDPsy with distinct trajectories of depression severity during continuation treatment and to detect predictors of membership to the worsening trajectory. One hundred and twenty-six persons aged 18-85 years participated in a 36-week randomized placebo-controlled trial (RCT) that examined the clinical effects of continuing olanzapine once an episode of MDDPsy had remitted with sertraline plus olanzapine. Latent class mixed modeling was used to identify subgroups of participants with distinct trajectories of depression severity during the RCT. Machine learning was used to predict membership to the trajectories based on participant pre-trajectory characteristics. Seventy-one (56.3%) participants belonged to a subgroup with a stable trajectory of depression scores and 55 (43.7%) belonged to a subgroup with a worsening trajectory. A random forest model with high prediction accuracy (AUC of 0.812) found that the strongest predictors of membership to the worsening subgroup were residual depression symptoms at onset of remission, followed by anxiety score at RCT baseline and age of onset of the first lifetime depressive episode. In a logistic regression model that examined depression score at onset of remission as the only predictor variable, the AUC (0.778) was close to that of the machine learning model. Residual depression at onset of remission has high accuracy in predicting membership to worsening outcome of remitted MDDPsy. Research is needed to determine how best to optimize the outcome of psychotic MDDPsy with residual symptoms.</abstract><cop>England</cop><pub>Cambridge University Press</pub><pmid>37818656</pmid><doi>10.1017/S0033291723002945</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6806-0235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-2917
ispartof Psychological medicine, 2024-04, Vol.54 (6), p.1142-1151
issn 0033-2917
1469-8978
1469-8978
language eng
recordid cdi_proquest_miscellaneous_2875851482
source Applied Social Sciences Index & Abstracts (ASSIA); MEDLINE; Cambridge University Press Journals Complete
subjects Accuracy
Age of onset
Clinical trials
Delusions
Depression
Depressive Disorder, Major - diagnosis
Depressive Disorder, Major - drug therapy
Drug dosages
Hallucinations
Humans
Learning algorithms
Machine learning
Membership
Mental depression
Olanzapine
Olanzapine - therapeutic use
Psychosis
Psychotic Disorders - drug therapy
Psychotic symptoms
Remission
Remission (Medicine)
Residual symptoms
Sertraline
Sertraline - therapeutic use
title Trajectories of remitted psychotic depression: identification of predictors of worsening by machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectories%20of%20remitted%20psychotic%20depression:%20identification%20of%20predictors%20of%20worsening%20by%20machine%20learning&rft.jtitle=Psychological%20medicine&rft.au=Banerjee,%20Samprit&rft.aucorp=STOP-PD%20II%20Study%20Group&rft.date=2024-04-01&rft.volume=54&rft.issue=6&rft.spage=1142&rft.epage=1151&rft.pages=1142-1151&rft.issn=0033-2917&rft.eissn=1469-8978&rft_id=info:doi/10.1017/S0033291723002945&rft_dat=%3Cproquest_cross%3E3030972018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030972018&rft_id=info:pmid/37818656&rfr_iscdi=true