Experimental investigation of the impact of LWR on sub-100-nm device performance

Argon Fluoride (ArF) lithography is essential to develop a sub-100-nm device, however, line edge roughness (LER) and line width roughness (LWR) is playing a critical role due to the immaturity of photoresist and the lack of etch resistance. Researchers are trying to improve LER and LWR properties by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2004-12, Vol.51 (12), p.1984-1988
Hauptverfasser: Hyun-Woo Kim, Ji-Young Lee, Shin, J., Sang-Gyun Woo, Han-Ku Cho, Joo-Tae Moon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1988
container_issue 12
container_start_page 1984
container_title IEEE transactions on electron devices
container_volume 51
creator Hyun-Woo Kim
Ji-Young Lee
Shin, J.
Sang-Gyun Woo
Han-Ku Cho
Joo-Tae Moon
description Argon Fluoride (ArF) lithography is essential to develop a sub-100-nm device, however, line edge roughness (LER) and line width roughness (LWR) is playing a critical role due to the immaturity of photoresist and the lack of etch resistance. Researchers are trying to improve LER and LWR properties by optimizing photoresist materials and process conditions. In this paper, experiment results are presented to study the impact of LER and LWR to device performance so that the reasonable control range of LER and LWR can be defined. To implement the experiment, a 80-nm node of single negative-channel metal-oxide-semiconductor transistors were fabricated, which had various ranges of gate length, width, LER, and LWR. The amount of LER and LWR could be successfully controlled by applying different resist materials, defocus, and overetch time. Experimental results show that leakage current is significantly increased as LWR increases when the gate length is less than 85 nm. The main degradation is standard deviation of off-current (I/sub off/), and LWR is better representation to characterize a device performance.
doi_str_mv 10.1109/TED.2004.839115
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28755540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1362957</ieee_id><sourcerecordid>2428102291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-851b84119ca996fea36925ead762db1553864068471abae3c41a48255c7796f33</originalsourceid><addsrcrecordid>eNqFkctLAzEQxoMoWKtnD14WQW_bZjaPTY5S6wMKilQ8hjSd1ZR91M226H9vagsFL56Gmfzm48t8hJwDHQBQPZyObwcZpXygmAYQB6QHQuSpllwekh6loFLNFDsmJyEsYis5z3rkefy1xNZXWHe2THy9xtD5d9v5pk6aIuk-MPHV0rpu003eXpI4D6tZCpSmdZXMce0dJlGiaNrK1g5PyVFhy4Bnu9onr3fj6eghnTzdP45uJqnjXHapEjBTHEA7q7Us0DKpM4F2nstsPovOmZKcSsVzsDOLzHGwXGVCuDyPPGN9cr3VXbbN5yq6NpUPDsvS1tisgsk0VQpA_g-qXAjBaQQv_4CLZtXW8RNGRatU81-14RZybRNCi4VZxuvZ9tsANZscTMzBbHIw2xzixtVO1gZny6KNV_JhvyYzJZiEyF1sOY-I-2cmMy1y9gNegY3R</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884109416</pqid></control><display><type>article</type><title>Experimental investigation of the impact of LWR on sub-100-nm device performance</title><source>IEEE</source><creator>Hyun-Woo Kim ; Ji-Young Lee ; Shin, J. ; Sang-Gyun Woo ; Han-Ku Cho ; Joo-Tae Moon</creator><creatorcontrib>Hyun-Woo Kim ; Ji-Young Lee ; Shin, J. ; Sang-Gyun Woo ; Han-Ku Cho ; Joo-Tae Moon</creatorcontrib><description>Argon Fluoride (ArF) lithography is essential to develop a sub-100-nm device, however, line edge roughness (LER) and line width roughness (LWR) is playing a critical role due to the immaturity of photoresist and the lack of etch resistance. Researchers are trying to improve LER and LWR properties by optimizing photoresist materials and process conditions. In this paper, experiment results are presented to study the impact of LER and LWR to device performance so that the reasonable control range of LER and LWR can be defined. To implement the experiment, a 80-nm node of single negative-channel metal-oxide-semiconductor transistors were fabricated, which had various ranges of gate length, width, LER, and LWR. The amount of LER and LWR could be successfully controlled by applying different resist materials, defocus, and overetch time. Experimental results show that leakage current is significantly increased as LWR increases when the gate length is less than 85 nm. The main degradation is standard deviation of off-current (I/sub off/), and LWR is better representation to characterize a device performance.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2004.839115</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Argon materials/devices ; Electronics ; Exact sciences and technology ; Line edge roughness (LER) ; line width roughness (LWR) ; Lithography ; Microelectronic fabrication (materials and surfaces technology) ; MOSFETs ; Nanotechnology ; nMOS ; Resists ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Standard deviation ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2004-12, Vol.51 (12), p.1984-1988</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-851b84119ca996fea36925ead762db1553864068471abae3c41a48255c7796f33</citedby><cites>FETCH-LOGICAL-c446t-851b84119ca996fea36925ead762db1553864068471abae3c41a48255c7796f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1362957$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1362957$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16285361$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyun-Woo Kim</creatorcontrib><creatorcontrib>Ji-Young Lee</creatorcontrib><creatorcontrib>Shin, J.</creatorcontrib><creatorcontrib>Sang-Gyun Woo</creatorcontrib><creatorcontrib>Han-Ku Cho</creatorcontrib><creatorcontrib>Joo-Tae Moon</creatorcontrib><title>Experimental investigation of the impact of LWR on sub-100-nm device performance</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Argon Fluoride (ArF) lithography is essential to develop a sub-100-nm device, however, line edge roughness (LER) and line width roughness (LWR) is playing a critical role due to the immaturity of photoresist and the lack of etch resistance. Researchers are trying to improve LER and LWR properties by optimizing photoresist materials and process conditions. In this paper, experiment results are presented to study the impact of LER and LWR to device performance so that the reasonable control range of LER and LWR can be defined. To implement the experiment, a 80-nm node of single negative-channel metal-oxide-semiconductor transistors were fabricated, which had various ranges of gate length, width, LER, and LWR. The amount of LER and LWR could be successfully controlled by applying different resist materials, defocus, and overetch time. Experimental results show that leakage current is significantly increased as LWR increases when the gate length is less than 85 nm. The main degradation is standard deviation of off-current (I/sub off/), and LWR is better representation to characterize a device performance.</description><subject>Applied sciences</subject><subject>Argon materials/devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Line edge roughness (LER)</subject><subject>line width roughness (LWR)</subject><subject>Lithography</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>MOSFETs</subject><subject>Nanotechnology</subject><subject>nMOS</subject><subject>Resists</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Standard deviation</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkctLAzEQxoMoWKtnD14WQW_bZjaPTY5S6wMKilQ8hjSd1ZR91M226H9vagsFL56Gmfzm48t8hJwDHQBQPZyObwcZpXygmAYQB6QHQuSpllwekh6loFLNFDsmJyEsYis5z3rkefy1xNZXWHe2THy9xtD5d9v5pk6aIuk-MPHV0rpu003eXpI4D6tZCpSmdZXMce0dJlGiaNrK1g5PyVFhy4Bnu9onr3fj6eghnTzdP45uJqnjXHapEjBTHEA7q7Us0DKpM4F2nstsPovOmZKcSsVzsDOLzHGwXGVCuDyPPGN9cr3VXbbN5yq6NpUPDsvS1tisgsk0VQpA_g-qXAjBaQQv_4CLZtXW8RNGRatU81-14RZybRNCi4VZxuvZ9tsANZscTMzBbHIw2xzixtVO1gZny6KNV_JhvyYzJZiEyF1sOY-I-2cmMy1y9gNegY3R</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Hyun-Woo Kim</creator><creator>Ji-Young Lee</creator><creator>Shin, J.</creator><creator>Sang-Gyun Woo</creator><creator>Han-Ku Cho</creator><creator>Joo-Tae Moon</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20041201</creationdate><title>Experimental investigation of the impact of LWR on sub-100-nm device performance</title><author>Hyun-Woo Kim ; Ji-Young Lee ; Shin, J. ; Sang-Gyun Woo ; Han-Ku Cho ; Joo-Tae Moon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-851b84119ca996fea36925ead762db1553864068471abae3c41a48255c7796f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Argon materials/devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Line edge roughness (LER)</topic><topic>line width roughness (LWR)</topic><topic>Lithography</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>MOSFETs</topic><topic>Nanotechnology</topic><topic>nMOS</topic><topic>Resists</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Standard deviation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyun-Woo Kim</creatorcontrib><creatorcontrib>Ji-Young Lee</creatorcontrib><creatorcontrib>Shin, J.</creatorcontrib><creatorcontrib>Sang-Gyun Woo</creatorcontrib><creatorcontrib>Han-Ku Cho</creatorcontrib><creatorcontrib>Joo-Tae Moon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyun-Woo Kim</au><au>Ji-Young Lee</au><au>Shin, J.</au><au>Sang-Gyun Woo</au><au>Han-Ku Cho</au><au>Joo-Tae Moon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of the impact of LWR on sub-100-nm device performance</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2004-12-01</date><risdate>2004</risdate><volume>51</volume><issue>12</issue><spage>1984</spage><epage>1988</epage><pages>1984-1988</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Argon Fluoride (ArF) lithography is essential to develop a sub-100-nm device, however, line edge roughness (LER) and line width roughness (LWR) is playing a critical role due to the immaturity of photoresist and the lack of etch resistance. Researchers are trying to improve LER and LWR properties by optimizing photoresist materials and process conditions. In this paper, experiment results are presented to study the impact of LER and LWR to device performance so that the reasonable control range of LER and LWR can be defined. To implement the experiment, a 80-nm node of single negative-channel metal-oxide-semiconductor transistors were fabricated, which had various ranges of gate length, width, LER, and LWR. The amount of LER and LWR could be successfully controlled by applying different resist materials, defocus, and overetch time. Experimental results show that leakage current is significantly increased as LWR increases when the gate length is less than 85 nm. The main degradation is standard deviation of off-current (I/sub off/), and LWR is better representation to characterize a device performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2004.839115</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2004-12, Vol.51 (12), p.1984-1988
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_28755540
source IEEE
subjects Applied sciences
Argon materials/devices
Electronics
Exact sciences and technology
Line edge roughness (LER)
line width roughness (LWR)
Lithography
Microelectronic fabrication (materials and surfaces technology)
MOSFETs
Nanotechnology
nMOS
Resists
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Standard deviation
Transistors
title Experimental investigation of the impact of LWR on sub-100-nm device performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20the%20impact%20of%20LWR%20on%20sub-100-nm%20device%20performance&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Hyun-Woo%20Kim&rft.date=2004-12-01&rft.volume=51&rft.issue=12&rft.spage=1984&rft.epage=1988&rft.pages=1984-1988&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2004.839115&rft_dat=%3Cproquest_RIE%3E2428102291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884109416&rft_id=info:pmid/&rft_ieee_id=1362957&rfr_iscdi=true