Latrunculin resistance mechanism of non‐conventional actin NAP1 uncovered by molecular dynamics simulations

Monomeric G‐actin polymerizes into F‐actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin‐A (Lat‐A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non‐conventional actin, NAP1,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytoskeleton (Hoboken, N.J.) N.J.), 2024-02, Vol.81 (2-3), p.143-150
Hauptverfasser: Morita, Rikuri, Shigeta, Yasuteru, Harada, Ryuhei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 2-3
container_start_page 143
container_title Cytoskeleton (Hoboken, N.J.)
container_volume 81
creator Morita, Rikuri
Shigeta, Yasuteru
Harada, Ryuhei
description Monomeric G‐actin polymerizes into F‐actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin‐A (Lat‐A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non‐conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat‐A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat‐A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat‐A due to substitutions. In conclusion, our binding‐free‐energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.
doi_str_mv 10.1002/cm.21798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2875381234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875381234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3108-1333642e6468523275a5713433f768d8c4cf80e3ecd9aa4a6281b7381c2b2d553</originalsourceid><addsrcrecordid>eNp1kUtqHDEQhoVJ8DhjQ05gBN54044eLbV6aYY8DJPEC3stNOpqItOSxlK3Te9yBJ_RJ4mc8QMCWVVRfP8HVYXQR0rOKCHsk_VnjDat2kMHtK3biouWvXvtVb1AH3K-IUS2nPB9tOCNooIycoD82oxpCnYaXMAJssujCRawB_vLBJc9jj0OMTz-frAx3EEYXQxmwMaOJfDj_JLiko53kKDDmxn7OECRmYS7ORjvbMbZ-TJ4yuVD9L43Q4aj57pE118-X62-VeufXy9W5-vKckpURTnnsmYga6kE46wRRjSU15z3jVSdsrXtFQEOtmuNqY1kim4arqhlG9YJwZfodOfdpng7QR61d9nCMJgAccqaqUYUnBXlEp38g97EKZUVC9UyUctWCvkmtCnmnKDX2-S8SbOmRD-9QFuv_76goMfPwmnjoXsFX25egGoH3LsB5v-K9Or7TvgHWByPtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925469656</pqid></control><display><type>article</type><title>Latrunculin resistance mechanism of non‐conventional actin NAP1 uncovered by molecular dynamics simulations</title><source>Wiley Online Library All Journals</source><creator>Morita, Rikuri ; Shigeta, Yasuteru ; Harada, Ryuhei</creator><creatorcontrib>Morita, Rikuri ; Shigeta, Yasuteru ; Harada, Ryuhei</creatorcontrib><description>Monomeric G‐actin polymerizes into F‐actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin‐A (Lat‐A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non‐conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat‐A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat‐A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat‐A due to substitutions. In conclusion, our binding‐free‐energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.</description><identifier>ISSN: 1949-3584</identifier><identifier>EISSN: 1949-3592</identifier><identifier>DOI: 10.1002/cm.21798</identifier><identifier>PMID: 37815120</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Actin ; Affinity ; Algae ; Amino acids ; Chlamydomonas ; Cytoskeleton ; Depolymerization ; drug resistance ; Free energy ; latrunculin ; molecular dynamics ; Molecular modelling ; Phylogeny ; Simulation ; Skeletal muscle</subject><ispartof>Cytoskeleton (Hoboken, N.J.), 2024-02, Vol.81 (2-3), p.143-150</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3108-1333642e6468523275a5713433f768d8c4cf80e3ecd9aa4a6281b7381c2b2d553</cites><orcidid>0000-0002-0465-5528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcm.21798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcm.21798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37815120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morita, Rikuri</creatorcontrib><creatorcontrib>Shigeta, Yasuteru</creatorcontrib><creatorcontrib>Harada, Ryuhei</creatorcontrib><title>Latrunculin resistance mechanism of non‐conventional actin NAP1 uncovered by molecular dynamics simulations</title><title>Cytoskeleton (Hoboken, N.J.)</title><addtitle>Cytoskeleton (Hoboken)</addtitle><description>Monomeric G‐actin polymerizes into F‐actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin‐A (Lat‐A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non‐conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat‐A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat‐A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat‐A due to substitutions. In conclusion, our binding‐free‐energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.</description><subject>Actin</subject><subject>Affinity</subject><subject>Algae</subject><subject>Amino acids</subject><subject>Chlamydomonas</subject><subject>Cytoskeleton</subject><subject>Depolymerization</subject><subject>drug resistance</subject><subject>Free energy</subject><subject>latrunculin</subject><subject>molecular dynamics</subject><subject>Molecular modelling</subject><subject>Phylogeny</subject><subject>Simulation</subject><subject>Skeletal muscle</subject><issn>1949-3584</issn><issn>1949-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kUtqHDEQhoVJ8DhjQ05gBN54044eLbV6aYY8DJPEC3stNOpqItOSxlK3Te9yBJ_RJ4mc8QMCWVVRfP8HVYXQR0rOKCHsk_VnjDat2kMHtK3biouWvXvtVb1AH3K-IUS2nPB9tOCNooIycoD82oxpCnYaXMAJssujCRawB_vLBJc9jj0OMTz-frAx3EEYXQxmwMaOJfDj_JLiko53kKDDmxn7OECRmYS7ORjvbMbZ-TJ4yuVD9L43Q4aj57pE118-X62-VeufXy9W5-vKckpURTnnsmYga6kE46wRRjSU15z3jVSdsrXtFQEOtmuNqY1kim4arqhlG9YJwZfodOfdpng7QR61d9nCMJgAccqaqUYUnBXlEp38g97EKZUVC9UyUctWCvkmtCnmnKDX2-S8SbOmRD-9QFuv_76goMfPwmnjoXsFX25egGoH3LsB5v-K9Or7TvgHWByPtQ</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Morita, Rikuri</creator><creator>Shigeta, Yasuteru</creator><creator>Harada, Ryuhei</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0465-5528</orcidid></search><sort><creationdate>202402</creationdate><title>Latrunculin resistance mechanism of non‐conventional actin NAP1 uncovered by molecular dynamics simulations</title><author>Morita, Rikuri ; Shigeta, Yasuteru ; Harada, Ryuhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3108-1333642e6468523275a5713433f768d8c4cf80e3ecd9aa4a6281b7381c2b2d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Affinity</topic><topic>Algae</topic><topic>Amino acids</topic><topic>Chlamydomonas</topic><topic>Cytoskeleton</topic><topic>Depolymerization</topic><topic>drug resistance</topic><topic>Free energy</topic><topic>latrunculin</topic><topic>molecular dynamics</topic><topic>Molecular modelling</topic><topic>Phylogeny</topic><topic>Simulation</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Rikuri</creatorcontrib><creatorcontrib>Shigeta, Yasuteru</creatorcontrib><creatorcontrib>Harada, Ryuhei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytoskeleton (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Rikuri</au><au>Shigeta, Yasuteru</au><au>Harada, Ryuhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Latrunculin resistance mechanism of non‐conventional actin NAP1 uncovered by molecular dynamics simulations</atitle><jtitle>Cytoskeleton (Hoboken, N.J.)</jtitle><addtitle>Cytoskeleton (Hoboken)</addtitle><date>2024-02</date><risdate>2024</risdate><volume>81</volume><issue>2-3</issue><spage>143</spage><epage>150</epage><pages>143-150</pages><issn>1949-3584</issn><eissn>1949-3592</eissn><abstract>Monomeric G‐actin polymerizes into F‐actin to perform various cellular functions. Actin depolymerization drugs, such as latrunculin‐A (Lat‐A), inhibit filament formation and disrupt the cytoskeleton. Interestingly, the green algae Chlamydomonas alternatively produces a non‐conventional actin, NAP1, that responds to inhibition by latrunculin. However, the molecular mechanism underlying latrunculin resistance of NAP1 remains unclear because of the difficulty due to its low in vitro polymerizability. Instead of biochemical experiments, we performed molecular dynamics (MD) simulations to investigate whether NAP1 has a lower affinity for Lat‐A than the conventional actins. Our phylogenetic comparison of the binding free energies shows that Lat‐A is evolutionarily optimized for skeletal muscles. By decomposing the binding free energy into each amino acid residue, we found that some residues in NAP1 play an important role in latrunculin resistance, suggesting that the primary mechanism of latrunculin resistance is the loss of affinity for Lat‐A due to substitutions. In conclusion, our binding‐free‐energy calculations using MD simulations provide the critical insight that loss of affinity is the direct mechanism of latrunculin resistance.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37815120</pmid><doi>10.1002/cm.21798</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0465-5528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3584
ispartof Cytoskeleton (Hoboken, N.J.), 2024-02, Vol.81 (2-3), p.143-150
issn 1949-3584
1949-3592
language eng
recordid cdi_proquest_miscellaneous_2875381234
source Wiley Online Library All Journals
subjects Actin
Affinity
Algae
Amino acids
Chlamydomonas
Cytoskeleton
Depolymerization
drug resistance
Free energy
latrunculin
molecular dynamics
Molecular modelling
Phylogeny
Simulation
Skeletal muscle
title Latrunculin resistance mechanism of non‐conventional actin NAP1 uncovered by molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latrunculin%20resistance%20mechanism%20of%20non%E2%80%90conventional%20actin%20NAP1%20uncovered%20by%20molecular%20dynamics%20simulations&rft.jtitle=Cytoskeleton%20(Hoboken,%20N.J.)&rft.au=Morita,%20Rikuri&rft.date=2024-02&rft.volume=81&rft.issue=2-3&rft.spage=143&rft.epage=150&rft.pages=143-150&rft.issn=1949-3584&rft.eissn=1949-3592&rft_id=info:doi/10.1002/cm.21798&rft_dat=%3Cproquest_cross%3E2875381234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925469656&rft_id=info:pmid/37815120&rfr_iscdi=true