Stability criteria for certain third-order delay differential equations

In this paper, we study the asymptotic stability of the zero solution of third-order linear delay differential equations of the form y ‴ ( t ) = p 1 y ″ ( t ) + p 2 y ″ ( t - τ ) + q 1 y ′ ( t ) + q 2 y ′ ( t - τ ) + v 1 y ( t ) + v 2 y ( t - τ ) , where p 1 , p 2 , q 1 , q 2 , v 1 and v 2 are certa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2006-04, Vol.188 (2), p.319-335
Hauptverfasser: Cahlon, Baruch, Schmidt, Darrell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 2
container_start_page 319
container_title Journal of computational and applied mathematics
container_volume 188
creator Cahlon, Baruch
Schmidt, Darrell
description In this paper, we study the asymptotic stability of the zero solution of third-order linear delay differential equations of the form y ‴ ( t ) = p 1 y ″ ( t ) + p 2 y ″ ( t - τ ) + q 1 y ′ ( t ) + q 2 y ′ ( t - τ ) + v 1 y ( t ) + v 2 y ( t - τ ) , where p 1 , p 2 , q 1 , q 2 , v 1 and v 2 are certain constants. Here τ > 0 is a constant delay. In proving our results we make use of Pontryagin's theory for quasi-polynomials.
doi_str_mv 10.1016/j.cam.2005.04.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28753735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037704270500258X</els_id><sourcerecordid>28753735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-d4a3b9832a59e5f7795c15476a2a40c33ac9935369e51b0ddee9fa0b10600f5c3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iywJZwju04ERNCfElIDMBsXe2zcJUmre0i9d-TqkhsTDfc876nexi75FBx4M3NsrK4qmoAVYGsQMgjNuOt7kqudXvMZiC0LkHW-pSdpbQEgKbjcsae3jMuQh_yrrAxZIoBCz_GwlLMGIYif4XoyjE6ioWjHneFC95TpCEH7AvabDGHcUjn7MRjn-jid87Z5-PDx_1z-fr29HJ_91paCTyXTqJYdK2oUXWkvNadslxJ3WCNEqwQaLtOKNFMW74A54g6j7Dg0AB4ZcWcXR9613HcbCllswrJUt_jQOM2mbrVSuipYc74AbRxTCmSN-sYVhh3hoPZKzNLMykze2UGpJmUTZmr33JMFnsfcbAh_QW14k3d8om7PXA0ffodKJpkAw2WXIhks3Fj-OfKD7xJgSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28753735</pqid></control><display><type>article</type><title>Stability criteria for certain third-order delay differential equations</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cahlon, Baruch ; Schmidt, Darrell</creator><creatorcontrib>Cahlon, Baruch ; Schmidt, Darrell</creatorcontrib><description>In this paper, we study the asymptotic stability of the zero solution of third-order linear delay differential equations of the form y ‴ ( t ) = p 1 y ″ ( t ) + p 2 y ″ ( t - τ ) + q 1 y ′ ( t ) + q 2 y ′ ( t - τ ) + v 1 y ( t ) + v 2 y ( t - τ ) , where p 1 , p 2 , q 1 , q 2 , v 1 and v 2 are certain constants. Here τ &gt; 0 is a constant delay. In proving our results we make use of Pontryagin's theory for quasi-polynomials.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2005.04.034</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic stability ; Characteristic functions ; Delay ; Exact sciences and technology ; Integral equations ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; Sciences and techniques of general use ; Stability criteria ; Stability regions ; Sufficient conditions</subject><ispartof>Journal of computational and applied mathematics, 2006-04, Vol.188 (2), p.319-335</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-d4a3b9832a59e5f7795c15476a2a40c33ac9935369e51b0ddee9fa0b10600f5c3</citedby><cites>FETCH-LOGICAL-c401t-d4a3b9832a59e5f7795c15476a2a40c33ac9935369e51b0ddee9fa0b10600f5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037704270500258X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17516281$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cahlon, Baruch</creatorcontrib><creatorcontrib>Schmidt, Darrell</creatorcontrib><title>Stability criteria for certain third-order delay differential equations</title><title>Journal of computational and applied mathematics</title><description>In this paper, we study the asymptotic stability of the zero solution of third-order linear delay differential equations of the form y ‴ ( t ) = p 1 y ″ ( t ) + p 2 y ″ ( t - τ ) + q 1 y ′ ( t ) + q 2 y ′ ( t - τ ) + v 1 y ( t ) + v 2 y ( t - τ ) , where p 1 , p 2 , q 1 , q 2 , v 1 and v 2 are certain constants. Here τ &gt; 0 is a constant delay. In proving our results we make use of Pontryagin's theory for quasi-polynomials.</description><subject>Asymptotic stability</subject><subject>Characteristic functions</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Stability criteria</subject><subject>Stability regions</subject><subject>Sufficient conditions</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iywJZwju04ERNCfElIDMBsXe2zcJUmre0i9d-TqkhsTDfc876nexi75FBx4M3NsrK4qmoAVYGsQMgjNuOt7kqudXvMZiC0LkHW-pSdpbQEgKbjcsae3jMuQh_yrrAxZIoBCz_GwlLMGIYif4XoyjE6ioWjHneFC95TpCEH7AvabDGHcUjn7MRjn-jid87Z5-PDx_1z-fr29HJ_91paCTyXTqJYdK2oUXWkvNadslxJ3WCNEqwQaLtOKNFMW74A54g6j7Dg0AB4ZcWcXR9613HcbCllswrJUt_jQOM2mbrVSuipYc74AbRxTCmSN-sYVhh3hoPZKzNLMykze2UGpJmUTZmr33JMFnsfcbAh_QW14k3d8om7PXA0ffodKJpkAw2WXIhks3Fj-OfKD7xJgSY</recordid><startdate>20060415</startdate><enddate>20060415</enddate><creator>Cahlon, Baruch</creator><creator>Schmidt, Darrell</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060415</creationdate><title>Stability criteria for certain third-order delay differential equations</title><author>Cahlon, Baruch ; Schmidt, Darrell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-d4a3b9832a59e5f7795c15476a2a40c33ac9935369e51b0ddee9fa0b10600f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Asymptotic stability</topic><topic>Characteristic functions</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Stability criteria</topic><topic>Stability regions</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cahlon, Baruch</creatorcontrib><creatorcontrib>Schmidt, Darrell</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cahlon, Baruch</au><au>Schmidt, Darrell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability criteria for certain third-order delay differential equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2006-04-15</date><risdate>2006</risdate><volume>188</volume><issue>2</issue><spage>319</spage><epage>335</epage><pages>319-335</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, we study the asymptotic stability of the zero solution of third-order linear delay differential equations of the form y ‴ ( t ) = p 1 y ″ ( t ) + p 2 y ″ ( t - τ ) + q 1 y ′ ( t ) + q 2 y ′ ( t - τ ) + v 1 y ( t ) + v 2 y ( t - τ ) , where p 1 , p 2 , q 1 , q 2 , v 1 and v 2 are certain constants. Here τ &gt; 0 is a constant delay. In proving our results we make use of Pontryagin's theory for quasi-polynomials.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2005.04.034</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2006-04, Vol.188 (2), p.319-335
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28753735
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Asymptotic stability
Characteristic functions
Delay
Exact sciences and technology
Integral equations
Mathematical analysis
Mathematics
Ordinary differential equations
Sciences and techniques of general use
Stability criteria
Stability regions
Sufficient conditions
title Stability criteria for certain third-order delay differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20criteria%20for%20certain%20third-order%20delay%20differential%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Cahlon,%20Baruch&rft.date=2006-04-15&rft.volume=188&rft.issue=2&rft.spage=319&rft.epage=335&rft.pages=319-335&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2005.04.034&rft_dat=%3Cproquest_cross%3E28753735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28753735&rft_id=info:pmid/&rft_els_id=S037704270500258X&rfr_iscdi=true