Wavelet decomposition and radial basis function networks for system monitoring

Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 1998-10, Vol.45 (5), p.2293-2301
Hauptverfasser: Ikonomopoulos, A., Endou, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2301
container_issue 5
container_start_page 2293
container_title IEEE transactions on nuclear science
container_volume 45
creator Ikonomopoulos, A.
Endou, A.
description Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.
doi_str_mv 10.1109/23.725267
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28752817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>725267</ieee_id><sourcerecordid>28752817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EEqUwsDJ5QmJIie04LxlRRQGpggXEaDn2CzIkdrFTUP97AqmY3sf9dDodIecsXzCW19dcLIBLXsIBmTEpq4xJqA7JLM9ZldVFXR-Tk5Tex7OQuZyRx1f9hR0O1KIJ_SYkN7jgqfaWRm2d7mijk0u03Xrzp3gcvkP8GD8h0rRLA_a0D94NITr_dkqOWt0lPNvPOXlZ3T4v77P1093D8madGQ4wZEw3BoEJ4EJAWZhy3AxwxrRFaKypW0Cwth0zQgM1CuRgqqIoTcut0EbMyeXku4nhc4tpUL1LBrtOewzbpHgFklcMRvBqAk0MKUVs1Sa6XsedYrn6bUxxoabGRvZiYh0i_nN78QeJzmeL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28752817</pqid></control><display><type>article</type><title>Wavelet decomposition and radial basis function networks for system monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Ikonomopoulos, A. ; Endou, A.</creator><creatorcontrib>Ikonomopoulos, A. ; Endou, A.</creatorcontrib><description>Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.725267</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer networks ; Condition monitoring ; Discrete wavelet transforms ; Inductors ; Multilayer perceptrons ; Neural networks ; Parameter estimation ; Radial basis function networks ; Wavelet analysis</subject><ispartof>IEEE transactions on nuclear science, 1998-10, Vol.45 (5), p.2293-2301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</citedby><cites>FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/725267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/725267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ikonomopoulos, A.</creatorcontrib><creatorcontrib>Endou, A.</creatorcontrib><title>Wavelet decomposition and radial basis function networks for system monitoring</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.</description><subject>Artificial neural networks</subject><subject>Computer networks</subject><subject>Condition monitoring</subject><subject>Discrete wavelet transforms</subject><subject>Inductors</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Radial basis function networks</subject><subject>Wavelet analysis</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAUxC0EEqUwsDJ5QmJIie04LxlRRQGpggXEaDn2CzIkdrFTUP97AqmY3sf9dDodIecsXzCW19dcLIBLXsIBmTEpq4xJqA7JLM9ZldVFXR-Tk5Tex7OQuZyRx1f9hR0O1KIJ_SYkN7jgqfaWRm2d7mijk0u03Xrzp3gcvkP8GD8h0rRLA_a0D94NITr_dkqOWt0lPNvPOXlZ3T4v77P1093D8madGQ4wZEw3BoEJ4EJAWZhy3AxwxrRFaKypW0Cwth0zQgM1CuRgqqIoTcut0EbMyeXku4nhc4tpUL1LBrtOewzbpHgFklcMRvBqAk0MKUVs1Sa6XsedYrn6bUxxoabGRvZiYh0i_nN78QeJzmeL</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Ikonomopoulos, A.</creator><creator>Endou, A.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19981001</creationdate><title>Wavelet decomposition and radial basis function networks for system monitoring</title><author>Ikonomopoulos, A. ; Endou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Artificial neural networks</topic><topic>Computer networks</topic><topic>Condition monitoring</topic><topic>Discrete wavelet transforms</topic><topic>Inductors</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Radial basis function networks</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikonomopoulos, A.</creatorcontrib><creatorcontrib>Endou, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ikonomopoulos, A.</au><au>Endou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet decomposition and radial basis function networks for system monitoring</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>45</volume><issue>5</issue><spage>2293</spage><epage>2301</epage><pages>2293-2301</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.</abstract><pub>IEEE</pub><doi>10.1109/23.725267</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 1998-10, Vol.45 (5), p.2293-2301
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_miscellaneous_28752817
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Computer networks
Condition monitoring
Discrete wavelet transforms
Inductors
Multilayer perceptrons
Neural networks
Parameter estimation
Radial basis function networks
Wavelet analysis
title Wavelet decomposition and radial basis function networks for system monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20decomposition%20and%20radial%20basis%20function%20networks%20for%20system%20monitoring&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ikonomopoulos,%20A.&rft.date=1998-10-01&rft.volume=45&rft.issue=5&rft.spage=2293&rft.epage=2301&rft.pages=2293-2301&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.725267&rft_dat=%3Cproquest_RIE%3E28752817%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28752817&rft_id=info:pmid/&rft_ieee_id=725267&rfr_iscdi=true