Wavelet decomposition and radial basis function networks for system monitoring
Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measureme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 1998-10, Vol.45 (5), p.2293-2301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2301 |
---|---|
container_issue | 5 |
container_start_page | 2293 |
container_title | IEEE transactions on nuclear science |
container_volume | 45 |
creator | Ikonomopoulos, A. Endou, A. |
description | Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions. |
doi_str_mv | 10.1109/23.725267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28752817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>725267</ieee_id><sourcerecordid>28752817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EEqUwsDJ5QmJIie04LxlRRQGpggXEaDn2CzIkdrFTUP97AqmY3sf9dDodIecsXzCW19dcLIBLXsIBmTEpq4xJqA7JLM9ZldVFXR-Tk5Tex7OQuZyRx1f9hR0O1KIJ_SYkN7jgqfaWRm2d7mijk0u03Xrzp3gcvkP8GD8h0rRLA_a0D94NITr_dkqOWt0lPNvPOXlZ3T4v77P1093D8madGQ4wZEw3BoEJ4EJAWZhy3AxwxrRFaKypW0Cwth0zQgM1CuRgqqIoTcut0EbMyeXku4nhc4tpUL1LBrtOewzbpHgFklcMRvBqAk0MKUVs1Sa6XsedYrn6bUxxoabGRvZiYh0i_nN78QeJzmeL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28752817</pqid></control><display><type>article</type><title>Wavelet decomposition and radial basis function networks for system monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Ikonomopoulos, A. ; Endou, A.</creator><creatorcontrib>Ikonomopoulos, A. ; Endou, A.</creatorcontrib><description>Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/23.725267</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Computer networks ; Condition monitoring ; Discrete wavelet transforms ; Inductors ; Multilayer perceptrons ; Neural networks ; Parameter estimation ; Radial basis function networks ; Wavelet analysis</subject><ispartof>IEEE transactions on nuclear science, 1998-10, Vol.45 (5), p.2293-2301</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</citedby><cites>FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/725267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/725267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ikonomopoulos, A.</creatorcontrib><creatorcontrib>Endou, A.</creatorcontrib><title>Wavelet decomposition and radial basis function networks for system monitoring</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.</description><subject>Artificial neural networks</subject><subject>Computer networks</subject><subject>Condition monitoring</subject><subject>Discrete wavelet transforms</subject><subject>Inductors</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Radial basis function networks</subject><subject>Wavelet analysis</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAUxC0EEqUwsDJ5QmJIie04LxlRRQGpggXEaDn2CzIkdrFTUP97AqmY3sf9dDodIecsXzCW19dcLIBLXsIBmTEpq4xJqA7JLM9ZldVFXR-Tk5Tex7OQuZyRx1f9hR0O1KIJ_SYkN7jgqfaWRm2d7mijk0u03Xrzp3gcvkP8GD8h0rRLA_a0D94NITr_dkqOWt0lPNvPOXlZ3T4v77P1093D8madGQ4wZEw3BoEJ4EJAWZhy3AxwxrRFaKypW0Cwth0zQgM1CuRgqqIoTcut0EbMyeXku4nhc4tpUL1LBrtOewzbpHgFklcMRvBqAk0MKUVs1Sa6XsedYrn6bUxxoabGRvZiYh0i_nN78QeJzmeL</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Ikonomopoulos, A.</creator><creator>Endou, A.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19981001</creationdate><title>Wavelet decomposition and radial basis function networks for system monitoring</title><author>Ikonomopoulos, A. ; Endou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1abce7137233764c6372c7211ade7bdc9f7e7ddf4507b79e3e27c8446cf2d3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Artificial neural networks</topic><topic>Computer networks</topic><topic>Condition monitoring</topic><topic>Discrete wavelet transforms</topic><topic>Inductors</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Radial basis function networks</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikonomopoulos, A.</creatorcontrib><creatorcontrib>Endou, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ikonomopoulos, A.</au><au>Endou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet decomposition and radial basis function networks for system monitoring</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>1998-10-01</date><risdate>1998</risdate><volume>45</volume><issue>5</issue><spage>2293</spage><epage>2301</epage><pages>2293-2301</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.</abstract><pub>IEEE</pub><doi>10.1109/23.725267</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 1998-10, Vol.45 (5), p.2293-2301 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_miscellaneous_28752817 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Computer networks Condition monitoring Discrete wavelet transforms Inductors Multilayer perceptrons Neural networks Parameter estimation Radial basis function networks Wavelet analysis |
title | Wavelet decomposition and radial basis function networks for system monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20decomposition%20and%20radial%20basis%20function%20networks%20for%20system%20monitoring&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Ikonomopoulos,%20A.&rft.date=1998-10-01&rft.volume=45&rft.issue=5&rft.spage=2293&rft.epage=2301&rft.pages=2293-2301&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/23.725267&rft_dat=%3Cproquest_RIE%3E28752817%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28752817&rft_id=info:pmid/&rft_ieee_id=725267&rfr_iscdi=true |