Lead-free solder flip chip-on-laminate assembly and reliability

This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consisten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electronics packaging manufacturing 2001-10, Vol.24 (4), p.282-292
Hauptverfasser: Zhenwei Hou, Guoyun Tian, Hatcher, C., Johnson, R.W., Yaeger, E.K., Konarski, M.M., Crane, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 4
container_start_page 282
container_title IEEE transactions on electronics packaging manufacturing
container_volume 24
creator Zhenwei Hou
Guoyun Tian
Hatcher, C.
Johnson, R.W.
Yaeger, E.K.
Konarski, M.M.
Crane, L.
description This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.
doi_str_mv 10.1109/6104.980037
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28751969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>980037</ieee_id><sourcerecordid>28353657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1c24d55680cfc09cabe0c904b2cc0aa70f33a5b59f995b1cbde893d31f8052b33</originalsourceid><addsrcrecordid>eNqN0U1LxDAQBuAiCq6rJ2-eigcRJOskaZrkJLL4BQteFLyVNJ1iJP0w6R7237uliwcP6mkG5mFg5k2SUwoLSkFf5xSyhVYAXO4lMyqEIqAY2x97Rgnn2dthchTjBwDNBGOz5GaFpiJ1QExj5ysMae1dn9p315OuJd40rjUDpiZGbEq_SU1bpQG9M6XzbtgcJwe18RFPdnWevN7fvSwfyer54Wl5uyI2y_VAqGVZJUSuwNYWtDUlgtWQlcxaMEZCzbkRpdC11qKktqxQaV5xWisQrOR8nlxMe_vQfa4xDkXjokXvTYvdOhZMcyYzCn9DJQXVuf4H5ILnQm7h5a-Q5pIyLoGO9PwH_ejWod0-plAqy3MJcjzlakI2dDEGrIs-uMaETUGhGGMsxhiLKcatPpu0Q8RvuRt-Aa4LlZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884667073</pqid></control><display><type>article</type><title>Lead-free solder flip chip-on-laminate assembly and reliability</title><source>IEEE Electronic Library (IEL)</source><creator>Zhenwei Hou ; Guoyun Tian ; Hatcher, C. ; Johnson, R.W. ; Yaeger, E.K. ; Konarski, M.M. ; Crane, L.</creator><creatorcontrib>Zhenwei Hou ; Guoyun Tian ; Hatcher, C. ; Johnson, R.W. ; Yaeger, E.K. ; Konarski, M.M. ; Crane, L.</creatorcontrib><description>This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.</description><identifier>ISSN: 1521-334X</identifier><identifier>EISSN: 1558-0822</identifier><identifier>DOI: 10.1109/6104.980037</identifier><identifier>CODEN: ITEPFL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Assembly ; Atmosphere ; Cracks ; Dipping ; Electric shock ; Environmentally friendly manufacturing techniques ; Flip chip ; Flux ; Lead ; Nitrogen ; Solders ; Spraying ; Sprays ; Temperature ; Testing ; Thermal shock ; Wetting</subject><ispartof>IEEE transactions on electronics packaging manufacturing, 2001-10, Vol.24 (4), p.282-292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1c24d55680cfc09cabe0c904b2cc0aa70f33a5b59f995b1cbde893d31f8052b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/980037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/980037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhenwei Hou</creatorcontrib><creatorcontrib>Guoyun Tian</creatorcontrib><creatorcontrib>Hatcher, C.</creatorcontrib><creatorcontrib>Johnson, R.W.</creatorcontrib><creatorcontrib>Yaeger, E.K.</creatorcontrib><creatorcontrib>Konarski, M.M.</creatorcontrib><creatorcontrib>Crane, L.</creatorcontrib><title>Lead-free solder flip chip-on-laminate assembly and reliability</title><title>IEEE transactions on electronics packaging manufacturing</title><addtitle>TEPM</addtitle><description>This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.</description><subject>Assembly</subject><subject>Atmosphere</subject><subject>Cracks</subject><subject>Dipping</subject><subject>Electric shock</subject><subject>Environmentally friendly manufacturing techniques</subject><subject>Flip chip</subject><subject>Flux</subject><subject>Lead</subject><subject>Nitrogen</subject><subject>Solders</subject><subject>Spraying</subject><subject>Sprays</subject><subject>Temperature</subject><subject>Testing</subject><subject>Thermal shock</subject><subject>Wetting</subject><issn>1521-334X</issn><issn>1558-0822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1LxDAQBuAiCq6rJ2-eigcRJOskaZrkJLL4BQteFLyVNJ1iJP0w6R7237uliwcP6mkG5mFg5k2SUwoLSkFf5xSyhVYAXO4lMyqEIqAY2x97Rgnn2dthchTjBwDNBGOz5GaFpiJ1QExj5ysMae1dn9p315OuJd40rjUDpiZGbEq_SU1bpQG9M6XzbtgcJwe18RFPdnWevN7fvSwfyer54Wl5uyI2y_VAqGVZJUSuwNYWtDUlgtWQlcxaMEZCzbkRpdC11qKktqxQaV5xWisQrOR8nlxMe_vQfa4xDkXjokXvTYvdOhZMcyYzCn9DJQXVuf4H5ILnQm7h5a-Q5pIyLoGO9PwH_ejWod0-plAqy3MJcjzlakI2dDEGrIs-uMaETUGhGGMsxhiLKcatPpu0Q8RvuRt-Aa4LlZw</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Zhenwei Hou</creator><creator>Guoyun Tian</creator><creator>Hatcher, C.</creator><creator>Johnson, R.W.</creator><creator>Yaeger, E.K.</creator><creator>Konarski, M.M.</creator><creator>Crane, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>7TB</scope></search><sort><creationdate>20011001</creationdate><title>Lead-free solder flip chip-on-laminate assembly and reliability</title><author>Zhenwei Hou ; Guoyun Tian ; Hatcher, C. ; Johnson, R.W. ; Yaeger, E.K. ; Konarski, M.M. ; Crane, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1c24d55680cfc09cabe0c904b2cc0aa70f33a5b59f995b1cbde893d31f8052b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Assembly</topic><topic>Atmosphere</topic><topic>Cracks</topic><topic>Dipping</topic><topic>Electric shock</topic><topic>Environmentally friendly manufacturing techniques</topic><topic>Flip chip</topic><topic>Flux</topic><topic>Lead</topic><topic>Nitrogen</topic><topic>Solders</topic><topic>Spraying</topic><topic>Sprays</topic><topic>Temperature</topic><topic>Testing</topic><topic>Thermal shock</topic><topic>Wetting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhenwei Hou</creatorcontrib><creatorcontrib>Guoyun Tian</creatorcontrib><creatorcontrib>Hatcher, C.</creatorcontrib><creatorcontrib>Johnson, R.W.</creatorcontrib><creatorcontrib>Yaeger, E.K.</creatorcontrib><creatorcontrib>Konarski, M.M.</creatorcontrib><creatorcontrib>Crane, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhenwei Hou</au><au>Guoyun Tian</au><au>Hatcher, C.</au><au>Johnson, R.W.</au><au>Yaeger, E.K.</au><au>Konarski, M.M.</au><au>Crane, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead-free solder flip chip-on-laminate assembly and reliability</atitle><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle><stitle>TEPM</stitle><date>2001-10-01</date><risdate>2001</risdate><volume>24</volume><issue>4</issue><spage>282</spage><epage>292</epage><pages>282-292</pages><issn>1521-334X</issn><eissn>1558-0822</eissn><coden>ITEPFL</coden><abstract>This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/6104.980037</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1521-334X
ispartof IEEE transactions on electronics packaging manufacturing, 2001-10, Vol.24 (4), p.282-292
issn 1521-334X
1558-0822
language eng
recordid cdi_proquest_miscellaneous_28751969
source IEEE Electronic Library (IEL)
subjects Assembly
Atmosphere
Cracks
Dipping
Electric shock
Environmentally friendly manufacturing techniques
Flip chip
Flux
Lead
Nitrogen
Solders
Spraying
Sprays
Temperature
Testing
Thermal shock
Wetting
title Lead-free solder flip chip-on-laminate assembly and reliability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead-free%20solder%20flip%20chip-on-laminate%20assembly%20and%20reliability&rft.jtitle=IEEE%20transactions%20on%20electronics%20packaging%20manufacturing&rft.au=Zhenwei%20Hou&rft.date=2001-10-01&rft.volume=24&rft.issue=4&rft.spage=282&rft.epage=292&rft.pages=282-292&rft.issn=1521-334X&rft.eissn=1558-0822&rft.coden=ITEPFL&rft_id=info:doi/10.1109/6104.980037&rft_dat=%3Cproquest_RIE%3E28353657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884667073&rft_id=info:pmid/&rft_ieee_id=980037&rfr_iscdi=true