Lead-free solder flip chip-on-laminate assembly and reliability
This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consisten...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electronics packaging manufacturing 2001-10, Vol.24 (4), p.282-292 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 4 |
container_start_page | 282 |
container_title | IEEE transactions on electronics packaging manufacturing |
container_volume | 24 |
creator | Zhenwei Hou Guoyun Tian Hatcher, C. Johnson, R.W. Yaeger, E.K. Konarski, M.M. Crane, L. |
description | This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts. |
doi_str_mv | 10.1109/6104.980037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28751969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>980037</ieee_id><sourcerecordid>28353657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1c24d55680cfc09cabe0c904b2cc0aa70f33a5b59f995b1cbde893d31f8052b33</originalsourceid><addsrcrecordid>eNqN0U1LxDAQBuAiCq6rJ2-eigcRJOskaZrkJLL4BQteFLyVNJ1iJP0w6R7237uliwcP6mkG5mFg5k2SUwoLSkFf5xSyhVYAXO4lMyqEIqAY2x97Rgnn2dthchTjBwDNBGOz5GaFpiJ1QExj5ysMae1dn9p315OuJd40rjUDpiZGbEq_SU1bpQG9M6XzbtgcJwe18RFPdnWevN7fvSwfyer54Wl5uyI2y_VAqGVZJUSuwNYWtDUlgtWQlcxaMEZCzbkRpdC11qKktqxQaV5xWisQrOR8nlxMe_vQfa4xDkXjokXvTYvdOhZMcyYzCn9DJQXVuf4H5ILnQm7h5a-Q5pIyLoGO9PwH_ejWod0-plAqy3MJcjzlakI2dDEGrIs-uMaETUGhGGMsxhiLKcatPpu0Q8RvuRt-Aa4LlZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884667073</pqid></control><display><type>article</type><title>Lead-free solder flip chip-on-laminate assembly and reliability</title><source>IEEE Electronic Library (IEL)</source><creator>Zhenwei Hou ; Guoyun Tian ; Hatcher, C. ; Johnson, R.W. ; Yaeger, E.K. ; Konarski, M.M. ; Crane, L.</creator><creatorcontrib>Zhenwei Hou ; Guoyun Tian ; Hatcher, C. ; Johnson, R.W. ; Yaeger, E.K. ; Konarski, M.M. ; Crane, L.</creatorcontrib><description>This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.</description><identifier>ISSN: 1521-334X</identifier><identifier>EISSN: 1558-0822</identifier><identifier>DOI: 10.1109/6104.980037</identifier><identifier>CODEN: ITEPFL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Assembly ; Atmosphere ; Cracks ; Dipping ; Electric shock ; Environmentally friendly manufacturing techniques ; Flip chip ; Flux ; Lead ; Nitrogen ; Solders ; Spraying ; Sprays ; Temperature ; Testing ; Thermal shock ; Wetting</subject><ispartof>IEEE transactions on electronics packaging manufacturing, 2001-10, Vol.24 (4), p.282-292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1c24d55680cfc09cabe0c904b2cc0aa70f33a5b59f995b1cbde893d31f8052b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/980037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/980037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhenwei Hou</creatorcontrib><creatorcontrib>Guoyun Tian</creatorcontrib><creatorcontrib>Hatcher, C.</creatorcontrib><creatorcontrib>Johnson, R.W.</creatorcontrib><creatorcontrib>Yaeger, E.K.</creatorcontrib><creatorcontrib>Konarski, M.M.</creatorcontrib><creatorcontrib>Crane, L.</creatorcontrib><title>Lead-free solder flip chip-on-laminate assembly and reliability</title><title>IEEE transactions on electronics packaging manufacturing</title><addtitle>TEPM</addtitle><description>This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.</description><subject>Assembly</subject><subject>Atmosphere</subject><subject>Cracks</subject><subject>Dipping</subject><subject>Electric shock</subject><subject>Environmentally friendly manufacturing techniques</subject><subject>Flip chip</subject><subject>Flux</subject><subject>Lead</subject><subject>Nitrogen</subject><subject>Solders</subject><subject>Spraying</subject><subject>Sprays</subject><subject>Temperature</subject><subject>Testing</subject><subject>Thermal shock</subject><subject>Wetting</subject><issn>1521-334X</issn><issn>1558-0822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1LxDAQBuAiCq6rJ2-eigcRJOskaZrkJLL4BQteFLyVNJ1iJP0w6R7237uliwcP6mkG5mFg5k2SUwoLSkFf5xSyhVYAXO4lMyqEIqAY2x97Rgnn2dthchTjBwDNBGOz5GaFpiJ1QExj5ysMae1dn9p315OuJd40rjUDpiZGbEq_SU1bpQG9M6XzbtgcJwe18RFPdnWevN7fvSwfyer54Wl5uyI2y_VAqGVZJUSuwNYWtDUlgtWQlcxaMEZCzbkRpdC11qKktqxQaV5xWisQrOR8nlxMe_vQfa4xDkXjokXvTYvdOhZMcyYzCn9DJQXVuf4H5ILnQm7h5a-Q5pIyLoGO9PwH_ejWod0-plAqy3MJcjzlakI2dDEGrIs-uMaETUGhGGMsxhiLKcatPpu0Q8RvuRt-Aa4LlZw</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Zhenwei Hou</creator><creator>Guoyun Tian</creator><creator>Hatcher, C.</creator><creator>Johnson, R.W.</creator><creator>Yaeger, E.K.</creator><creator>Konarski, M.M.</creator><creator>Crane, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>7TB</scope></search><sort><creationdate>20011001</creationdate><title>Lead-free solder flip chip-on-laminate assembly and reliability</title><author>Zhenwei Hou ; Guoyun Tian ; Hatcher, C. ; Johnson, R.W. ; Yaeger, E.K. ; Konarski, M.M. ; Crane, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1c24d55680cfc09cabe0c904b2cc0aa70f33a5b59f995b1cbde893d31f8052b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Assembly</topic><topic>Atmosphere</topic><topic>Cracks</topic><topic>Dipping</topic><topic>Electric shock</topic><topic>Environmentally friendly manufacturing techniques</topic><topic>Flip chip</topic><topic>Flux</topic><topic>Lead</topic><topic>Nitrogen</topic><topic>Solders</topic><topic>Spraying</topic><topic>Sprays</topic><topic>Temperature</topic><topic>Testing</topic><topic>Thermal shock</topic><topic>Wetting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhenwei Hou</creatorcontrib><creatorcontrib>Guoyun Tian</creatorcontrib><creatorcontrib>Hatcher, C.</creatorcontrib><creatorcontrib>Johnson, R.W.</creatorcontrib><creatorcontrib>Yaeger, E.K.</creatorcontrib><creatorcontrib>Konarski, M.M.</creatorcontrib><creatorcontrib>Crane, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhenwei Hou</au><au>Guoyun Tian</au><au>Hatcher, C.</au><au>Johnson, R.W.</au><au>Yaeger, E.K.</au><au>Konarski, M.M.</au><au>Crane, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead-free solder flip chip-on-laminate assembly and reliability</atitle><jtitle>IEEE transactions on electronics packaging manufacturing</jtitle><stitle>TEPM</stitle><date>2001-10-01</date><risdate>2001</risdate><volume>24</volume><issue>4</issue><spage>282</spage><epage>292</epage><pages>282-292</pages><issn>1521-334X</issn><eissn>1558-0822</eissn><coden>ITEPFL</coden><abstract>This paper examines the assembly process for flip chip die with SnAgCu solder bumps and the results of liquid-to-liquid thermal shock testing. The SnAgCu alloy required a thicker dip layer of flux to achieve good wetting compared to the SnPb eutectic alloy. A liquid spray flux yielded more consistent solder wetting with the SnAgCu alloy. With both fluxes, a nitrogen reflow atmosphere was necessary with the SnAgCu alloy. A peak reflow temperature of 246/spl deg/C was used for the assembly of the SnAgCu thermal shock test vehicles. A lower peak temperature of 235/spl deg/C did not yield sufficient solder wetting. Liquid-to-liquid thermal shock testing was performed from -40/spl deg/C to +125/spl deg/C. The SnPb alloy performed slightly better than the SnAgCu and the dip flux was better that the spray flux. The degree of delamination with the SnAgCu alloy was significantly higher than with the SnPb alloy. Cracks in the underfill between adjacent solder balls were observed. The SnPb alloy extruded into these cracks more readily than the SnAgCu and created electrical shorts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/6104.980037</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1521-334X |
ispartof | IEEE transactions on electronics packaging manufacturing, 2001-10, Vol.24 (4), p.282-292 |
issn | 1521-334X 1558-0822 |
language | eng |
recordid | cdi_proquest_miscellaneous_28751969 |
source | IEEE Electronic Library (IEL) |
subjects | Assembly Atmosphere Cracks Dipping Electric shock Environmentally friendly manufacturing techniques Flip chip Flux Lead Nitrogen Solders Spraying Sprays Temperature Testing Thermal shock Wetting |
title | Lead-free solder flip chip-on-laminate assembly and reliability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead-free%20solder%20flip%20chip-on-laminate%20assembly%20and%20reliability&rft.jtitle=IEEE%20transactions%20on%20electronics%20packaging%20manufacturing&rft.au=Zhenwei%20Hou&rft.date=2001-10-01&rft.volume=24&rft.issue=4&rft.spage=282&rft.epage=292&rft.pages=282-292&rft.issn=1521-334X&rft.eissn=1558-0822&rft.coden=ITEPFL&rft_id=info:doi/10.1109/6104.980037&rft_dat=%3Cproquest_RIE%3E28353657%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884667073&rft_id=info:pmid/&rft_ieee_id=980037&rfr_iscdi=true |