Picosecond-Scale Ultrafast Many-Body Dynamics in an Ultracold Rydberg-Excited Atomic Mott Insulator
We report the observation and control of ultrafast many-body dynamics of electrons in ultracold Rydberg-excited atoms, spatially ordered in a three-dimensional Mott insulator (MI) with unity filling in an optical lattice. By mapping out the time-domain Ramsey interferometry in the picosecond timesca...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-09, Vol.131 (12), p.123201-123201, Article 123201 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the observation and control of ultrafast many-body dynamics of electrons in ultracold Rydberg-excited atoms, spatially ordered in a three-dimensional Mott insulator (MI) with unity filling in an optical lattice. By mapping out the time-domain Ramsey interferometry in the picosecond timescale, we can deduce entanglement growth indicating the emergence of many-body correlations via dipolar forces. We analyze our observations with different theoretical approaches and find that the semiclassical model breaks down, thus indicating that quantum fluctuations play a decisive role in the observed dynamics. Combining picosecond Rydberg excitation with MI lattice thus provides a platform for simulating nonequilibrium dynamics of strongly correlated systems in synthetic ultracold atomic crystals, such as in a metal-like quantum gas regime. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.131.123201 |