Bandgap Engineering of Erbium‐Metallofullerenes toward Switchable Photoluminescence

Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er‐EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono‐Er‐EMFs exemplified by Er@C82 a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-12, Vol.35 (51), p.e2304121-n/a
Hauptverfasser: Jin, Huaimin, Xin, Jinpeng, Xiang, Wenhao, Jiang, Zhanxin, Han, Xinyi, Chen, Muqing, Du, Pingwu, Yao, Yang‐Rong, Yang, Shangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page e2304121
container_title Advanced materials (Weinheim)
container_volume 35
creator Jin, Huaimin
Xin, Jinpeng
Xiang, Wenhao
Jiang, Zhanxin
Han, Xinyi
Chen, Muqing
Du, Pingwu
Yao, Yang‐Rong
Yang, Shangfeng
description Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er‐EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono‐Er‐EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er‐cyanide cluster into various C82 cages to form novel Er‐monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2(5), Cs(6), and C2v(9)), the photoluminescent properties of CYCFs are investigated, and obvious near‐infrared (NIR) photoluminescence only is observed for ErCN@C2(5)‐C82. Combined with a comparative photoluminescence study of three medium‐bandgap di‐Er‐EMFs, including Er2@Cs(6)‐C82, Er2O@Cs(6)‐C82, and Er2C2@Cs(6)‐C82, this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er‐EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di‐Er‐EMFs differ dramatically. It is found that the location of the Er atom within the same Cs(6)‐C82 cage is almost fixed and independent on the endo‐unit; thus the previous statement on the key role of metal position in photoluminescence of di‐Er‐EMFs seems erroneous, and the geometric configuration of the endo‐unit, especially the bridging mode of two Er ions, is decisive instead. The photoluminescent property of monometallic cyanide clusterfullerenes is investigated. By encapsulating a triangular erbium (Er)‐cyanide cluster into a C2(5)‐C82 cage, photoluminescence of mono‐Er‐metallofullerene is switched on. Combined with three medium‐bandgap di‐erbium‐metallofullerenes, the bandgap threshold for judging whether an Er‐metallofullerenes is photoluminescent is determined to be between 0.83 and 0.74 eV.
doi_str_mv 10.1002/adma.202304121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874266583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874266583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-de180f1592bdfabbe1eab47e049b2f12a45b38a616b7f08b25a4018407c1f1be3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQQC3UqmxprxxRpF64ZDvjOIl9XGD7IYFaqeVs2cl4CXLixU604sZP6G_sL2nQUipx6Wkub55mHmPHCEsE4B9N25slB16AQI4HbIElx1yAKl-xBaiizFUl5CF7m9ItAKgKqjfssKgllLIoF-z6zAztxmyz9bDpBqLYDZssuGwdbTf1vx9-XdFovA9u8p4iDZSyMexMbLMfu25sboz1lH2_CWPwUz8LUkNDQ-_Ya2d8ovdP84hdf1r_PP-SX377_PV8dZk3RV1g3hJKcFgqbltnrCUkY0VNIJTlDrkRpS2kqbCytQNpeWkEoBRQN-jQUnHETvfebQx3E6VR9918gfdmoDAlzWUteFXNr87ohxfobZjiMF-nuQIBUiqsZ2q5p5oYUork9DZ2vYn3GkE_BtePwfVz8Hnh5Ek72Z7aZ_xv4RlQe2DXebr_j06vLq5W_-R_AMNNjfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904088917</pqid></control><display><type>article</type><title>Bandgap Engineering of Erbium‐Metallofullerenes toward Switchable Photoluminescence</title><source>Wiley Online Library All Journals</source><creator>Jin, Huaimin ; Xin, Jinpeng ; Xiang, Wenhao ; Jiang, Zhanxin ; Han, Xinyi ; Chen, Muqing ; Du, Pingwu ; Yao, Yang‐Rong ; Yang, Shangfeng</creator><creatorcontrib>Jin, Huaimin ; Xin, Jinpeng ; Xiang, Wenhao ; Jiang, Zhanxin ; Han, Xinyi ; Chen, Muqing ; Du, Pingwu ; Yao, Yang‐Rong ; Yang, Shangfeng</creatorcontrib><description>Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er‐EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono‐Er‐EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er‐cyanide cluster into various C82 cages to form novel Er‐monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2(5), Cs(6), and C2v(9)), the photoluminescent properties of CYCFs are investigated, and obvious near‐infrared (NIR) photoluminescence only is observed for ErCN@C2(5)‐C82. Combined with a comparative photoluminescence study of three medium‐bandgap di‐Er‐EMFs, including Er2@Cs(6)‐C82, Er2O@Cs(6)‐C82, and Er2C2@Cs(6)‐C82, this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er‐EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di‐Er‐EMFs differ dramatically. It is found that the location of the Er atom within the same Cs(6)‐C82 cage is almost fixed and independent on the endo‐unit; thus the previous statement on the key role of metal position in photoluminescence of di‐Er‐EMFs seems erroneous, and the geometric configuration of the endo‐unit, especially the bridging mode of two Er ions, is decisive instead. The photoluminescent property of monometallic cyanide clusterfullerenes is investigated. By encapsulating a triangular erbium (Er)‐cyanide cluster into a C2(5)‐C82 cage, photoluminescence of mono‐Er‐metallofullerene is switched on. Combined with three medium‐bandgap di‐erbium‐metallofullerenes, the bandgap threshold for judging whether an Er‐metallofullerenes is photoluminescent is determined to be between 0.83 and 0.74 eV.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202304121</identifier><identifier>PMID: 37805835</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cages ; cyanide cluster ; Encapsulation ; endohedral metallofullerenes ; Energy gap ; Erbium ; Materials science ; Metallofullerenes ; optical bandgap ; Photoluminescence</subject><ispartof>Advanced materials (Weinheim), 2023-12, Vol.35 (51), p.e2304121-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-de180f1592bdfabbe1eab47e049b2f12a45b38a616b7f08b25a4018407c1f1be3</citedby><cites>FETCH-LOGICAL-c3731-de180f1592bdfabbe1eab47e049b2f12a45b38a616b7f08b25a4018407c1f1be3</cites><orcidid>0000-0001-7087-6372 ; 0000-0003-3495-1691 ; 0000-0002-6931-9613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202304121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202304121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37805835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Huaimin</creatorcontrib><creatorcontrib>Xin, Jinpeng</creatorcontrib><creatorcontrib>Xiang, Wenhao</creatorcontrib><creatorcontrib>Jiang, Zhanxin</creatorcontrib><creatorcontrib>Han, Xinyi</creatorcontrib><creatorcontrib>Chen, Muqing</creatorcontrib><creatorcontrib>Du, Pingwu</creatorcontrib><creatorcontrib>Yao, Yang‐Rong</creatorcontrib><creatorcontrib>Yang, Shangfeng</creatorcontrib><title>Bandgap Engineering of Erbium‐Metallofullerenes toward Switchable Photoluminescence</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er‐EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono‐Er‐EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er‐cyanide cluster into various C82 cages to form novel Er‐monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2(5), Cs(6), and C2v(9)), the photoluminescent properties of CYCFs are investigated, and obvious near‐infrared (NIR) photoluminescence only is observed for ErCN@C2(5)‐C82. Combined with a comparative photoluminescence study of three medium‐bandgap di‐Er‐EMFs, including Er2@Cs(6)‐C82, Er2O@Cs(6)‐C82, and Er2C2@Cs(6)‐C82, this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er‐EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di‐Er‐EMFs differ dramatically. It is found that the location of the Er atom within the same Cs(6)‐C82 cage is almost fixed and independent on the endo‐unit; thus the previous statement on the key role of metal position in photoluminescence of di‐Er‐EMFs seems erroneous, and the geometric configuration of the endo‐unit, especially the bridging mode of two Er ions, is decisive instead. The photoluminescent property of monometallic cyanide clusterfullerenes is investigated. By encapsulating a triangular erbium (Er)‐cyanide cluster into a C2(5)‐C82 cage, photoluminescence of mono‐Er‐metallofullerene is switched on. Combined with three medium‐bandgap di‐erbium‐metallofullerenes, the bandgap threshold for judging whether an Er‐metallofullerenes is photoluminescent is determined to be between 0.83 and 0.74 eV.</description><subject>Cages</subject><subject>cyanide cluster</subject><subject>Encapsulation</subject><subject>endohedral metallofullerenes</subject><subject>Energy gap</subject><subject>Erbium</subject><subject>Materials science</subject><subject>Metallofullerenes</subject><subject>optical bandgap</subject><subject>Photoluminescence</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQQC3UqmxprxxRpF64ZDvjOIl9XGD7IYFaqeVs2cl4CXLixU604sZP6G_sL2nQUipx6Wkub55mHmPHCEsE4B9N25slB16AQI4HbIElx1yAKl-xBaiizFUl5CF7m9ItAKgKqjfssKgllLIoF-z6zAztxmyz9bDpBqLYDZssuGwdbTf1vx9-XdFovA9u8p4iDZSyMexMbLMfu25sboz1lH2_CWPwUz8LUkNDQ-_Ya2d8ovdP84hdf1r_PP-SX377_PV8dZk3RV1g3hJKcFgqbltnrCUkY0VNIJTlDrkRpS2kqbCytQNpeWkEoBRQN-jQUnHETvfebQx3E6VR9918gfdmoDAlzWUteFXNr87ohxfobZjiMF-nuQIBUiqsZ2q5p5oYUork9DZ2vYn3GkE_BtePwfVz8Hnh5Ek72Z7aZ_xv4RlQe2DXebr_j06vLq5W_-R_AMNNjfs</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Jin, Huaimin</creator><creator>Xin, Jinpeng</creator><creator>Xiang, Wenhao</creator><creator>Jiang, Zhanxin</creator><creator>Han, Xinyi</creator><creator>Chen, Muqing</creator><creator>Du, Pingwu</creator><creator>Yao, Yang‐Rong</creator><creator>Yang, Shangfeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7087-6372</orcidid><orcidid>https://orcid.org/0000-0003-3495-1691</orcidid><orcidid>https://orcid.org/0000-0002-6931-9613</orcidid></search><sort><creationdate>20231201</creationdate><title>Bandgap Engineering of Erbium‐Metallofullerenes toward Switchable Photoluminescence</title><author>Jin, Huaimin ; Xin, Jinpeng ; Xiang, Wenhao ; Jiang, Zhanxin ; Han, Xinyi ; Chen, Muqing ; Du, Pingwu ; Yao, Yang‐Rong ; Yang, Shangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-de180f1592bdfabbe1eab47e049b2f12a45b38a616b7f08b25a4018407c1f1be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cages</topic><topic>cyanide cluster</topic><topic>Encapsulation</topic><topic>endohedral metallofullerenes</topic><topic>Energy gap</topic><topic>Erbium</topic><topic>Materials science</topic><topic>Metallofullerenes</topic><topic>optical bandgap</topic><topic>Photoluminescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Huaimin</creatorcontrib><creatorcontrib>Xin, Jinpeng</creatorcontrib><creatorcontrib>Xiang, Wenhao</creatorcontrib><creatorcontrib>Jiang, Zhanxin</creatorcontrib><creatorcontrib>Han, Xinyi</creatorcontrib><creatorcontrib>Chen, Muqing</creatorcontrib><creatorcontrib>Du, Pingwu</creatorcontrib><creatorcontrib>Yao, Yang‐Rong</creatorcontrib><creatorcontrib>Yang, Shangfeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Huaimin</au><au>Xin, Jinpeng</au><au>Xiang, Wenhao</au><au>Jiang, Zhanxin</au><au>Han, Xinyi</au><au>Chen, Muqing</au><au>Du, Pingwu</au><au>Yao, Yang‐Rong</au><au>Yang, Shangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap Engineering of Erbium‐Metallofullerenes toward Switchable Photoluminescence</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>35</volume><issue>51</issue><spage>e2304121</spage><epage>n/a</epage><pages>e2304121-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er‐EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono‐Er‐EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er‐cyanide cluster into various C82 cages to form novel Er‐monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2(5), Cs(6), and C2v(9)), the photoluminescent properties of CYCFs are investigated, and obvious near‐infrared (NIR) photoluminescence only is observed for ErCN@C2(5)‐C82. Combined with a comparative photoluminescence study of three medium‐bandgap di‐Er‐EMFs, including Er2@Cs(6)‐C82, Er2O@Cs(6)‐C82, and Er2C2@Cs(6)‐C82, this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er‐EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di‐Er‐EMFs differ dramatically. It is found that the location of the Er atom within the same Cs(6)‐C82 cage is almost fixed and independent on the endo‐unit; thus the previous statement on the key role of metal position in photoluminescence of di‐Er‐EMFs seems erroneous, and the geometric configuration of the endo‐unit, especially the bridging mode of two Er ions, is decisive instead. The photoluminescent property of monometallic cyanide clusterfullerenes is investigated. By encapsulating a triangular erbium (Er)‐cyanide cluster into a C2(5)‐C82 cage, photoluminescence of mono‐Er‐metallofullerene is switched on. Combined with three medium‐bandgap di‐erbium‐metallofullerenes, the bandgap threshold for judging whether an Er‐metallofullerenes is photoluminescent is determined to be between 0.83 and 0.74 eV.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37805835</pmid><doi>10.1002/adma.202304121</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7087-6372</orcidid><orcidid>https://orcid.org/0000-0003-3495-1691</orcidid><orcidid>https://orcid.org/0000-0002-6931-9613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-12, Vol.35 (51), p.e2304121-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2874266583
source Wiley Online Library All Journals
subjects Cages
cyanide cluster
Encapsulation
endohedral metallofullerenes
Energy gap
Erbium
Materials science
Metallofullerenes
optical bandgap
Photoluminescence
title Bandgap Engineering of Erbium‐Metallofullerenes toward Switchable Photoluminescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20Engineering%20of%20Erbium%E2%80%90Metallofullerenes%20toward%20Switchable%20Photoluminescence&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jin,%20Huaimin&rft.date=2023-12-01&rft.volume=35&rft.issue=51&rft.spage=e2304121&rft.epage=n/a&rft.pages=e2304121-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202304121&rft_dat=%3Cproquest_cross%3E2874266583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904088917&rft_id=info:pmid/37805835&rfr_iscdi=true