Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds
Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as c...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2023-11, Vol.299 (11), p.105318-105318, Article 105318 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105318 |
---|---|
container_issue | 11 |
container_start_page | 105318 |
container_title | The Journal of biological chemistry |
container_volume | 299 |
creator | Boudko, Sergei P. Ailsworth, Octavia Bryant, ZaKylah Cole, Camryn Edward, Jacob Edwards, Di’Andra Farrar, Sydney Gallup, Julianna Gallup, Michael Gergis, Martina Holt, Aalia Lach, Madeline Leaf, Elizabeth Mahoney, Finn McFarlin, Max Moran, Monica Murphy, Galeesa Myers, Charlotte Ni, Connie Redhair, Neve Rosa, Rocio Servidio, Olivia Sockbeson, Jaeden Taylor, Lauren Pedchenko, Vadim K. Pokidysheva, Elena N. Budko, Alena M. Baugh, Rachel Coates, P. Toby Fidler, Aaron L. Hudson, Heather M. Ivanov, Sergey V. Luer, Carl Pedchenko, Tetyana Preston, Robert L. Rafi, Mohamed Vanacore, Roberto Bhave, Gautam Hudson, Julie K. Hudson, Billy G. |
description | Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds. |
doi_str_mv | 10.1016/j.jbc.2023.105318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874262025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823023463</els_id><sourcerecordid>2874262025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoM-04D-BGsnRTbf4qSelKGmcsGHCj4i6kkhsnTVUyJtUN8wY-tml6dGkghEu-ey73HIReU7KlhMp3--1-cltGGG91z6l-hjaUaN7xnv54jjaEMNoNrNeX6GWte9KOGOgFuuRKDUoOwwb93uV5tj8h4fE7zgFPtsICacULLFOxCep7PI7jFu_u51yiB_xQoNZDARwrtq2KSy4-2hnHlPLRrjEnvN7bFfsSj9CY5PFiY1rbre0HsK1txjQ_nuZVZ0PIs6-v0Itg5wrXT-8V-nbz6evuc3f35XbcfbzrHB_k2jlFGIhBgxSCeOukF8EpSywQyYNSvdZMaClCIEz44JWm2rPAYXCCWSH5FXp71n0o-dcB6mqWWB00ExLkQzVMK8Fk87RvKD2jruRaCwRz2taWR0OJOQVg9qYFYE4BmHMArefNk_xhWsD_6_jreAM-nAFoSx4jFFNdhOTAxwJuNT7H_8j_Aamol1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874262025</pqid></control><display><type>article</type><title>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Boudko, Sergei P. ; Ailsworth, Octavia ; Bryant, ZaKylah ; Cole, Camryn ; Edward, Jacob ; Edwards, Di’Andra ; Farrar, Sydney ; Gallup, Julianna ; Gallup, Michael ; Gergis, Martina ; Holt, Aalia ; Lach, Madeline ; Leaf, Elizabeth ; Mahoney, Finn ; McFarlin, Max ; Moran, Monica ; Murphy, Galeesa ; Myers, Charlotte ; Ni, Connie ; Redhair, Neve ; Rosa, Rocio ; Servidio, Olivia ; Sockbeson, Jaeden ; Taylor, Lauren ; Pedchenko, Vadim K. ; Pokidysheva, Elena N. ; Budko, Alena M. ; Baugh, Rachel ; Coates, P. Toby ; Fidler, Aaron L. ; Hudson, Heather M. ; Ivanov, Sergey V. ; Luer, Carl ; Pedchenko, Tetyana ; Preston, Robert L. ; Rafi, Mohamed ; Vanacore, Roberto ; Bhave, Gautam ; Hudson, Julie K. ; Hudson, Billy G.</creator><creatorcontrib>Boudko, Sergei P. ; Ailsworth, Octavia ; Bryant, ZaKylah ; Cole, Camryn ; Edward, Jacob ; Edwards, Di’Andra ; Farrar, Sydney ; Gallup, Julianna ; Gallup, Michael ; Gergis, Martina ; Holt, Aalia ; Lach, Madeline ; Leaf, Elizabeth ; Mahoney, Finn ; McFarlin, Max ; Moran, Monica ; Murphy, Galeesa ; Myers, Charlotte ; Ni, Connie ; Redhair, Neve ; Rosa, Rocio ; Servidio, Olivia ; Sockbeson, Jaeden ; Taylor, Lauren ; Pedchenko, Vadim K. ; Pokidysheva, Elena N. ; Budko, Alena M. ; Baugh, Rachel ; Coates, P. Toby ; Fidler, Aaron L. ; Hudson, Heather M. ; Ivanov, Sergey V. ; Luer, Carl ; Pedchenko, Tetyana ; Preston, Robert L. ; Rafi, Mohamed ; Vanacore, Roberto ; Bhave, Gautam ; Hudson, Julie K. ; Hudson, Billy G. ; Aspirnauts</creatorcontrib><description>Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105318</identifier><identifier>PMID: 37797699</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Basement Membrane ; chloride ; Chlorides ; collagen IV ; Collagen Type IV - chemistry ; extracellular matrix ; Mammals ; Mice ; NC1 domain ; phylogeny ; protein evolution ; protein self-assembly ; protein stability ; Protein Structure, Tertiary ; Protein Subunits - analysis ; small molecule</subject><ispartof>The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105318-105318, Article 105318</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</citedby><cites>FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</cites><orcidid>0000-0001-8983-5802 ; 0000-0002-6379-2151 ; 0009-0009-6034-1425 ; 0000-0001-6167-6678 ; 0000-0003-3856-4859 ; 0009-0007-2535-5798 ; 0000-0002-2519-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37797699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudko, Sergei P.</creatorcontrib><creatorcontrib>Ailsworth, Octavia</creatorcontrib><creatorcontrib>Bryant, ZaKylah</creatorcontrib><creatorcontrib>Cole, Camryn</creatorcontrib><creatorcontrib>Edward, Jacob</creatorcontrib><creatorcontrib>Edwards, Di’Andra</creatorcontrib><creatorcontrib>Farrar, Sydney</creatorcontrib><creatorcontrib>Gallup, Julianna</creatorcontrib><creatorcontrib>Gallup, Michael</creatorcontrib><creatorcontrib>Gergis, Martina</creatorcontrib><creatorcontrib>Holt, Aalia</creatorcontrib><creatorcontrib>Lach, Madeline</creatorcontrib><creatorcontrib>Leaf, Elizabeth</creatorcontrib><creatorcontrib>Mahoney, Finn</creatorcontrib><creatorcontrib>McFarlin, Max</creatorcontrib><creatorcontrib>Moran, Monica</creatorcontrib><creatorcontrib>Murphy, Galeesa</creatorcontrib><creatorcontrib>Myers, Charlotte</creatorcontrib><creatorcontrib>Ni, Connie</creatorcontrib><creatorcontrib>Redhair, Neve</creatorcontrib><creatorcontrib>Rosa, Rocio</creatorcontrib><creatorcontrib>Servidio, Olivia</creatorcontrib><creatorcontrib>Sockbeson, Jaeden</creatorcontrib><creatorcontrib>Taylor, Lauren</creatorcontrib><creatorcontrib>Pedchenko, Vadim K.</creatorcontrib><creatorcontrib>Pokidysheva, Elena N.</creatorcontrib><creatorcontrib>Budko, Alena M.</creatorcontrib><creatorcontrib>Baugh, Rachel</creatorcontrib><creatorcontrib>Coates, P. Toby</creatorcontrib><creatorcontrib>Fidler, Aaron L.</creatorcontrib><creatorcontrib>Hudson, Heather M.</creatorcontrib><creatorcontrib>Ivanov, Sergey V.</creatorcontrib><creatorcontrib>Luer, Carl</creatorcontrib><creatorcontrib>Pedchenko, Tetyana</creatorcontrib><creatorcontrib>Preston, Robert L.</creatorcontrib><creatorcontrib>Rafi, Mohamed</creatorcontrib><creatorcontrib>Vanacore, Roberto</creatorcontrib><creatorcontrib>Bhave, Gautam</creatorcontrib><creatorcontrib>Hudson, Julie K.</creatorcontrib><creatorcontrib>Hudson, Billy G.</creatorcontrib><creatorcontrib>Aspirnauts</creatorcontrib><title>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.</description><subject>Animals</subject><subject>Basement Membrane</subject><subject>chloride</subject><subject>Chlorides</subject><subject>collagen IV</subject><subject>Collagen Type IV - chemistry</subject><subject>extracellular matrix</subject><subject>Mammals</subject><subject>Mice</subject><subject>NC1 domain</subject><subject>phylogeny</subject><subject>protein evolution</subject><subject>protein self-assembly</subject><subject>protein stability</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - analysis</subject><subject>small molecule</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoM-04D-BGsnRTbf4qSelKGmcsGHCj4i6kkhsnTVUyJtUN8wY-tml6dGkghEu-ey73HIReU7KlhMp3--1-cltGGG91z6l-hjaUaN7xnv54jjaEMNoNrNeX6GWte9KOGOgFuuRKDUoOwwb93uV5tj8h4fE7zgFPtsICacULLFOxCep7PI7jFu_u51yiB_xQoNZDARwrtq2KSy4-2hnHlPLRrjEnvN7bFfsSj9CY5PFiY1rbre0HsK1txjQ_nuZVZ0PIs6-v0Itg5wrXT-8V-nbz6evuc3f35XbcfbzrHB_k2jlFGIhBgxSCeOukF8EpSywQyYNSvdZMaClCIEz44JWm2rPAYXCCWSH5FXp71n0o-dcB6mqWWB00ExLkQzVMK8Fk87RvKD2jruRaCwRz2taWR0OJOQVg9qYFYE4BmHMArefNk_xhWsD_6_jreAM-nAFoSx4jFFNdhOTAxwJuNT7H_8j_Aamol1E</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Boudko, Sergei P.</creator><creator>Ailsworth, Octavia</creator><creator>Bryant, ZaKylah</creator><creator>Cole, Camryn</creator><creator>Edward, Jacob</creator><creator>Edwards, Di’Andra</creator><creator>Farrar, Sydney</creator><creator>Gallup, Julianna</creator><creator>Gallup, Michael</creator><creator>Gergis, Martina</creator><creator>Holt, Aalia</creator><creator>Lach, Madeline</creator><creator>Leaf, Elizabeth</creator><creator>Mahoney, Finn</creator><creator>McFarlin, Max</creator><creator>Moran, Monica</creator><creator>Murphy, Galeesa</creator><creator>Myers, Charlotte</creator><creator>Ni, Connie</creator><creator>Redhair, Neve</creator><creator>Rosa, Rocio</creator><creator>Servidio, Olivia</creator><creator>Sockbeson, Jaeden</creator><creator>Taylor, Lauren</creator><creator>Pedchenko, Vadim K.</creator><creator>Pokidysheva, Elena N.</creator><creator>Budko, Alena M.</creator><creator>Baugh, Rachel</creator><creator>Coates, P. Toby</creator><creator>Fidler, Aaron L.</creator><creator>Hudson, Heather M.</creator><creator>Ivanov, Sergey V.</creator><creator>Luer, Carl</creator><creator>Pedchenko, Tetyana</creator><creator>Preston, Robert L.</creator><creator>Rafi, Mohamed</creator><creator>Vanacore, Roberto</creator><creator>Bhave, Gautam</creator><creator>Hudson, Julie K.</creator><creator>Hudson, Billy G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8983-5802</orcidid><orcidid>https://orcid.org/0000-0002-6379-2151</orcidid><orcidid>https://orcid.org/0009-0009-6034-1425</orcidid><orcidid>https://orcid.org/0000-0001-6167-6678</orcidid><orcidid>https://orcid.org/0000-0003-3856-4859</orcidid><orcidid>https://orcid.org/0009-0007-2535-5798</orcidid><orcidid>https://orcid.org/0000-0002-2519-8864</orcidid></search><sort><creationdate>202311</creationdate><title>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</title><author>Boudko, Sergei P. ; Ailsworth, Octavia ; Bryant, ZaKylah ; Cole, Camryn ; Edward, Jacob ; Edwards, Di’Andra ; Farrar, Sydney ; Gallup, Julianna ; Gallup, Michael ; Gergis, Martina ; Holt, Aalia ; Lach, Madeline ; Leaf, Elizabeth ; Mahoney, Finn ; McFarlin, Max ; Moran, Monica ; Murphy, Galeesa ; Myers, Charlotte ; Ni, Connie ; Redhair, Neve ; Rosa, Rocio ; Servidio, Olivia ; Sockbeson, Jaeden ; Taylor, Lauren ; Pedchenko, Vadim K. ; Pokidysheva, Elena N. ; Budko, Alena M. ; Baugh, Rachel ; Coates, P. Toby ; Fidler, Aaron L. ; Hudson, Heather M. ; Ivanov, Sergey V. ; Luer, Carl ; Pedchenko, Tetyana ; Preston, Robert L. ; Rafi, Mohamed ; Vanacore, Roberto ; Bhave, Gautam ; Hudson, Julie K. ; Hudson, Billy G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Basement Membrane</topic><topic>chloride</topic><topic>Chlorides</topic><topic>collagen IV</topic><topic>Collagen Type IV - chemistry</topic><topic>extracellular matrix</topic><topic>Mammals</topic><topic>Mice</topic><topic>NC1 domain</topic><topic>phylogeny</topic><topic>protein evolution</topic><topic>protein self-assembly</topic><topic>protein stability</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - analysis</topic><topic>small molecule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudko, Sergei P.</creatorcontrib><creatorcontrib>Ailsworth, Octavia</creatorcontrib><creatorcontrib>Bryant, ZaKylah</creatorcontrib><creatorcontrib>Cole, Camryn</creatorcontrib><creatorcontrib>Edward, Jacob</creatorcontrib><creatorcontrib>Edwards, Di’Andra</creatorcontrib><creatorcontrib>Farrar, Sydney</creatorcontrib><creatorcontrib>Gallup, Julianna</creatorcontrib><creatorcontrib>Gallup, Michael</creatorcontrib><creatorcontrib>Gergis, Martina</creatorcontrib><creatorcontrib>Holt, Aalia</creatorcontrib><creatorcontrib>Lach, Madeline</creatorcontrib><creatorcontrib>Leaf, Elizabeth</creatorcontrib><creatorcontrib>Mahoney, Finn</creatorcontrib><creatorcontrib>McFarlin, Max</creatorcontrib><creatorcontrib>Moran, Monica</creatorcontrib><creatorcontrib>Murphy, Galeesa</creatorcontrib><creatorcontrib>Myers, Charlotte</creatorcontrib><creatorcontrib>Ni, Connie</creatorcontrib><creatorcontrib>Redhair, Neve</creatorcontrib><creatorcontrib>Rosa, Rocio</creatorcontrib><creatorcontrib>Servidio, Olivia</creatorcontrib><creatorcontrib>Sockbeson, Jaeden</creatorcontrib><creatorcontrib>Taylor, Lauren</creatorcontrib><creatorcontrib>Pedchenko, Vadim K.</creatorcontrib><creatorcontrib>Pokidysheva, Elena N.</creatorcontrib><creatorcontrib>Budko, Alena M.</creatorcontrib><creatorcontrib>Baugh, Rachel</creatorcontrib><creatorcontrib>Coates, P. Toby</creatorcontrib><creatorcontrib>Fidler, Aaron L.</creatorcontrib><creatorcontrib>Hudson, Heather M.</creatorcontrib><creatorcontrib>Ivanov, Sergey V.</creatorcontrib><creatorcontrib>Luer, Carl</creatorcontrib><creatorcontrib>Pedchenko, Tetyana</creatorcontrib><creatorcontrib>Preston, Robert L.</creatorcontrib><creatorcontrib>Rafi, Mohamed</creatorcontrib><creatorcontrib>Vanacore, Roberto</creatorcontrib><creatorcontrib>Bhave, Gautam</creatorcontrib><creatorcontrib>Hudson, Julie K.</creatorcontrib><creatorcontrib>Hudson, Billy G.</creatorcontrib><creatorcontrib>Aspirnauts</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudko, Sergei P.</au><au>Ailsworth, Octavia</au><au>Bryant, ZaKylah</au><au>Cole, Camryn</au><au>Edward, Jacob</au><au>Edwards, Di’Andra</au><au>Farrar, Sydney</au><au>Gallup, Julianna</au><au>Gallup, Michael</au><au>Gergis, Martina</au><au>Holt, Aalia</au><au>Lach, Madeline</au><au>Leaf, Elizabeth</au><au>Mahoney, Finn</au><au>McFarlin, Max</au><au>Moran, Monica</au><au>Murphy, Galeesa</au><au>Myers, Charlotte</au><au>Ni, Connie</au><au>Redhair, Neve</au><au>Rosa, Rocio</au><au>Servidio, Olivia</au><au>Sockbeson, Jaeden</au><au>Taylor, Lauren</au><au>Pedchenko, Vadim K.</au><au>Pokidysheva, Elena N.</au><au>Budko, Alena M.</au><au>Baugh, Rachel</au><au>Coates, P. Toby</au><au>Fidler, Aaron L.</au><au>Hudson, Heather M.</au><au>Ivanov, Sergey V.</au><au>Luer, Carl</au><au>Pedchenko, Tetyana</au><au>Preston, Robert L.</au><au>Rafi, Mohamed</au><au>Vanacore, Roberto</au><au>Bhave, Gautam</au><au>Hudson, Julie K.</au><au>Hudson, Billy G.</au><aucorp>Aspirnauts</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-11</date><risdate>2023</risdate><volume>299</volume><issue>11</issue><spage>105318</spage><epage>105318</epage><pages>105318-105318</pages><artnum>105318</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37797699</pmid><doi>10.1016/j.jbc.2023.105318</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8983-5802</orcidid><orcidid>https://orcid.org/0000-0002-6379-2151</orcidid><orcidid>https://orcid.org/0009-0009-6034-1425</orcidid><orcidid>https://orcid.org/0000-0001-6167-6678</orcidid><orcidid>https://orcid.org/0000-0003-3856-4859</orcidid><orcidid>https://orcid.org/0009-0007-2535-5798</orcidid><orcidid>https://orcid.org/0000-0002-2519-8864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105318-105318, Article 105318 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_2874262025 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Basement Membrane chloride Chlorides collagen IV Collagen Type IV - chemistry extracellular matrix Mammals Mice NC1 domain phylogeny protein evolution protein self-assembly protein stability Protein Structure, Tertiary Protein Subunits - analysis small molecule |
title | Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20IV%20of%20basement%20membranes:%20III.%20Chloride%20pressure%20is%20a%20primordial%20innovation%20that%20drives%20and%20maintains%20the%20assembly%20of%20scaffolds&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Boudko,%20Sergei%20P.&rft.aucorp=Aspirnauts&rft.date=2023-11&rft.volume=299&rft.issue=11&rft.spage=105318&rft.epage=105318&rft.pages=105318-105318&rft.artnum=105318&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105318&rft_dat=%3Cproquest_cross%3E2874262025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874262025&rft_id=info:pmid/37797699&rft_els_id=S0021925823023463&rfr_iscdi=true |