Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds

Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-11, Vol.299 (11), p.105318-105318, Article 105318
Hauptverfasser: Boudko, Sergei P., Ailsworth, Octavia, Bryant, ZaKylah, Cole, Camryn, Edward, Jacob, Edwards, Di’Andra, Farrar, Sydney, Gallup, Julianna, Gallup, Michael, Gergis, Martina, Holt, Aalia, Lach, Madeline, Leaf, Elizabeth, Mahoney, Finn, McFarlin, Max, Moran, Monica, Murphy, Galeesa, Myers, Charlotte, Ni, Connie, Redhair, Neve, Rosa, Rocio, Servidio, Olivia, Sockbeson, Jaeden, Taylor, Lauren, Pedchenko, Vadim K., Pokidysheva, Elena N., Budko, Alena M., Baugh, Rachel, Coates, P. Toby, Fidler, Aaron L., Hudson, Heather M., Ivanov, Sergey V., Luer, Carl, Pedchenko, Tetyana, Preston, Robert L., Rafi, Mohamed, Vanacore, Roberto, Bhave, Gautam, Hudson, Julie K., Hudson, Billy G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105318
container_issue 11
container_start_page 105318
container_title The Journal of biological chemistry
container_volume 299
creator Boudko, Sergei P.
Ailsworth, Octavia
Bryant, ZaKylah
Cole, Camryn
Edward, Jacob
Edwards, Di’Andra
Farrar, Sydney
Gallup, Julianna
Gallup, Michael
Gergis, Martina
Holt, Aalia
Lach, Madeline
Leaf, Elizabeth
Mahoney, Finn
McFarlin, Max
Moran, Monica
Murphy, Galeesa
Myers, Charlotte
Ni, Connie
Redhair, Neve
Rosa, Rocio
Servidio, Olivia
Sockbeson, Jaeden
Taylor, Lauren
Pedchenko, Vadim K.
Pokidysheva, Elena N.
Budko, Alena M.
Baugh, Rachel
Coates, P. Toby
Fidler, Aaron L.
Hudson, Heather M.
Ivanov, Sergey V.
Luer, Carl
Pedchenko, Tetyana
Preston, Robert L.
Rafi, Mohamed
Vanacore, Roberto
Bhave, Gautam
Hudson, Julie K.
Hudson, Billy G.
description Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.
doi_str_mv 10.1016/j.jbc.2023.105318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874262025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823023463</els_id><sourcerecordid>2874262025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoM-04D-BGsnRTbf4qSelKGmcsGHCj4i6kkhsnTVUyJtUN8wY-tml6dGkghEu-ey73HIReU7KlhMp3--1-cltGGG91z6l-hjaUaN7xnv54jjaEMNoNrNeX6GWte9KOGOgFuuRKDUoOwwb93uV5tj8h4fE7zgFPtsICacULLFOxCep7PI7jFu_u51yiB_xQoNZDARwrtq2KSy4-2hnHlPLRrjEnvN7bFfsSj9CY5PFiY1rbre0HsK1txjQ_nuZVZ0PIs6-v0Itg5wrXT-8V-nbz6evuc3f35XbcfbzrHB_k2jlFGIhBgxSCeOukF8EpSywQyYNSvdZMaClCIEz44JWm2rPAYXCCWSH5FXp71n0o-dcB6mqWWB00ExLkQzVMK8Fk87RvKD2jruRaCwRz2taWR0OJOQVg9qYFYE4BmHMArefNk_xhWsD_6_jreAM-nAFoSx4jFFNdhOTAxwJuNT7H_8j_Aamol1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874262025</pqid></control><display><type>article</type><title>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Boudko, Sergei P. ; Ailsworth, Octavia ; Bryant, ZaKylah ; Cole, Camryn ; Edward, Jacob ; Edwards, Di’Andra ; Farrar, Sydney ; Gallup, Julianna ; Gallup, Michael ; Gergis, Martina ; Holt, Aalia ; Lach, Madeline ; Leaf, Elizabeth ; Mahoney, Finn ; McFarlin, Max ; Moran, Monica ; Murphy, Galeesa ; Myers, Charlotte ; Ni, Connie ; Redhair, Neve ; Rosa, Rocio ; Servidio, Olivia ; Sockbeson, Jaeden ; Taylor, Lauren ; Pedchenko, Vadim K. ; Pokidysheva, Elena N. ; Budko, Alena M. ; Baugh, Rachel ; Coates, P. Toby ; Fidler, Aaron L. ; Hudson, Heather M. ; Ivanov, Sergey V. ; Luer, Carl ; Pedchenko, Tetyana ; Preston, Robert L. ; Rafi, Mohamed ; Vanacore, Roberto ; Bhave, Gautam ; Hudson, Julie K. ; Hudson, Billy G.</creator><creatorcontrib>Boudko, Sergei P. ; Ailsworth, Octavia ; Bryant, ZaKylah ; Cole, Camryn ; Edward, Jacob ; Edwards, Di’Andra ; Farrar, Sydney ; Gallup, Julianna ; Gallup, Michael ; Gergis, Martina ; Holt, Aalia ; Lach, Madeline ; Leaf, Elizabeth ; Mahoney, Finn ; McFarlin, Max ; Moran, Monica ; Murphy, Galeesa ; Myers, Charlotte ; Ni, Connie ; Redhair, Neve ; Rosa, Rocio ; Servidio, Olivia ; Sockbeson, Jaeden ; Taylor, Lauren ; Pedchenko, Vadim K. ; Pokidysheva, Elena N. ; Budko, Alena M. ; Baugh, Rachel ; Coates, P. Toby ; Fidler, Aaron L. ; Hudson, Heather M. ; Ivanov, Sergey V. ; Luer, Carl ; Pedchenko, Tetyana ; Preston, Robert L. ; Rafi, Mohamed ; Vanacore, Roberto ; Bhave, Gautam ; Hudson, Julie K. ; Hudson, Billy G. ; Aspirnauts</creatorcontrib><description>Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.105318</identifier><identifier>PMID: 37797699</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Basement Membrane ; chloride ; Chlorides ; collagen IV ; Collagen Type IV - chemistry ; extracellular matrix ; Mammals ; Mice ; NC1 domain ; phylogeny ; protein evolution ; protein self-assembly ; protein stability ; Protein Structure, Tertiary ; Protein Subunits - analysis ; small molecule</subject><ispartof>The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105318-105318, Article 105318</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</citedby><cites>FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</cites><orcidid>0000-0001-8983-5802 ; 0000-0002-6379-2151 ; 0009-0009-6034-1425 ; 0000-0001-6167-6678 ; 0000-0003-3856-4859 ; 0009-0007-2535-5798 ; 0000-0002-2519-8864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37797699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudko, Sergei P.</creatorcontrib><creatorcontrib>Ailsworth, Octavia</creatorcontrib><creatorcontrib>Bryant, ZaKylah</creatorcontrib><creatorcontrib>Cole, Camryn</creatorcontrib><creatorcontrib>Edward, Jacob</creatorcontrib><creatorcontrib>Edwards, Di’Andra</creatorcontrib><creatorcontrib>Farrar, Sydney</creatorcontrib><creatorcontrib>Gallup, Julianna</creatorcontrib><creatorcontrib>Gallup, Michael</creatorcontrib><creatorcontrib>Gergis, Martina</creatorcontrib><creatorcontrib>Holt, Aalia</creatorcontrib><creatorcontrib>Lach, Madeline</creatorcontrib><creatorcontrib>Leaf, Elizabeth</creatorcontrib><creatorcontrib>Mahoney, Finn</creatorcontrib><creatorcontrib>McFarlin, Max</creatorcontrib><creatorcontrib>Moran, Monica</creatorcontrib><creatorcontrib>Murphy, Galeesa</creatorcontrib><creatorcontrib>Myers, Charlotte</creatorcontrib><creatorcontrib>Ni, Connie</creatorcontrib><creatorcontrib>Redhair, Neve</creatorcontrib><creatorcontrib>Rosa, Rocio</creatorcontrib><creatorcontrib>Servidio, Olivia</creatorcontrib><creatorcontrib>Sockbeson, Jaeden</creatorcontrib><creatorcontrib>Taylor, Lauren</creatorcontrib><creatorcontrib>Pedchenko, Vadim K.</creatorcontrib><creatorcontrib>Pokidysheva, Elena N.</creatorcontrib><creatorcontrib>Budko, Alena M.</creatorcontrib><creatorcontrib>Baugh, Rachel</creatorcontrib><creatorcontrib>Coates, P. Toby</creatorcontrib><creatorcontrib>Fidler, Aaron L.</creatorcontrib><creatorcontrib>Hudson, Heather M.</creatorcontrib><creatorcontrib>Ivanov, Sergey V.</creatorcontrib><creatorcontrib>Luer, Carl</creatorcontrib><creatorcontrib>Pedchenko, Tetyana</creatorcontrib><creatorcontrib>Preston, Robert L.</creatorcontrib><creatorcontrib>Rafi, Mohamed</creatorcontrib><creatorcontrib>Vanacore, Roberto</creatorcontrib><creatorcontrib>Bhave, Gautam</creatorcontrib><creatorcontrib>Hudson, Julie K.</creatorcontrib><creatorcontrib>Hudson, Billy G.</creatorcontrib><creatorcontrib>Aspirnauts</creatorcontrib><title>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.</description><subject>Animals</subject><subject>Basement Membrane</subject><subject>chloride</subject><subject>Chlorides</subject><subject>collagen IV</subject><subject>Collagen Type IV - chemistry</subject><subject>extracellular matrix</subject><subject>Mammals</subject><subject>Mice</subject><subject>NC1 domain</subject><subject>phylogeny</subject><subject>protein evolution</subject><subject>protein self-assembly</subject><subject>protein stability</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - analysis</subject><subject>small molecule</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoM-04D-BGsnRTbf4qSelKGmcsGHCj4i6kkhsnTVUyJtUN8wY-tml6dGkghEu-ey73HIReU7KlhMp3--1-cltGGG91z6l-hjaUaN7xnv54jjaEMNoNrNeX6GWte9KOGOgFuuRKDUoOwwb93uV5tj8h4fE7zgFPtsICacULLFOxCep7PI7jFu_u51yiB_xQoNZDARwrtq2KSy4-2hnHlPLRrjEnvN7bFfsSj9CY5PFiY1rbre0HsK1txjQ_nuZVZ0PIs6-v0Itg5wrXT-8V-nbz6evuc3f35XbcfbzrHB_k2jlFGIhBgxSCeOukF8EpSywQyYNSvdZMaClCIEz44JWm2rPAYXCCWSH5FXp71n0o-dcB6mqWWB00ExLkQzVMK8Fk87RvKD2jruRaCwRz2taWR0OJOQVg9qYFYE4BmHMArefNk_xhWsD_6_jreAM-nAFoSx4jFFNdhOTAxwJuNT7H_8j_Aamol1E</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Boudko, Sergei P.</creator><creator>Ailsworth, Octavia</creator><creator>Bryant, ZaKylah</creator><creator>Cole, Camryn</creator><creator>Edward, Jacob</creator><creator>Edwards, Di’Andra</creator><creator>Farrar, Sydney</creator><creator>Gallup, Julianna</creator><creator>Gallup, Michael</creator><creator>Gergis, Martina</creator><creator>Holt, Aalia</creator><creator>Lach, Madeline</creator><creator>Leaf, Elizabeth</creator><creator>Mahoney, Finn</creator><creator>McFarlin, Max</creator><creator>Moran, Monica</creator><creator>Murphy, Galeesa</creator><creator>Myers, Charlotte</creator><creator>Ni, Connie</creator><creator>Redhair, Neve</creator><creator>Rosa, Rocio</creator><creator>Servidio, Olivia</creator><creator>Sockbeson, Jaeden</creator><creator>Taylor, Lauren</creator><creator>Pedchenko, Vadim K.</creator><creator>Pokidysheva, Elena N.</creator><creator>Budko, Alena M.</creator><creator>Baugh, Rachel</creator><creator>Coates, P. Toby</creator><creator>Fidler, Aaron L.</creator><creator>Hudson, Heather M.</creator><creator>Ivanov, Sergey V.</creator><creator>Luer, Carl</creator><creator>Pedchenko, Tetyana</creator><creator>Preston, Robert L.</creator><creator>Rafi, Mohamed</creator><creator>Vanacore, Roberto</creator><creator>Bhave, Gautam</creator><creator>Hudson, Julie K.</creator><creator>Hudson, Billy G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8983-5802</orcidid><orcidid>https://orcid.org/0000-0002-6379-2151</orcidid><orcidid>https://orcid.org/0009-0009-6034-1425</orcidid><orcidid>https://orcid.org/0000-0001-6167-6678</orcidid><orcidid>https://orcid.org/0000-0003-3856-4859</orcidid><orcidid>https://orcid.org/0009-0007-2535-5798</orcidid><orcidid>https://orcid.org/0000-0002-2519-8864</orcidid></search><sort><creationdate>202311</creationdate><title>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</title><author>Boudko, Sergei P. ; Ailsworth, Octavia ; Bryant, ZaKylah ; Cole, Camryn ; Edward, Jacob ; Edwards, Di’Andra ; Farrar, Sydney ; Gallup, Julianna ; Gallup, Michael ; Gergis, Martina ; Holt, Aalia ; Lach, Madeline ; Leaf, Elizabeth ; Mahoney, Finn ; McFarlin, Max ; Moran, Monica ; Murphy, Galeesa ; Myers, Charlotte ; Ni, Connie ; Redhair, Neve ; Rosa, Rocio ; Servidio, Olivia ; Sockbeson, Jaeden ; Taylor, Lauren ; Pedchenko, Vadim K. ; Pokidysheva, Elena N. ; Budko, Alena M. ; Baugh, Rachel ; Coates, P. Toby ; Fidler, Aaron L. ; Hudson, Heather M. ; Ivanov, Sergey V. ; Luer, Carl ; Pedchenko, Tetyana ; Preston, Robert L. ; Rafi, Mohamed ; Vanacore, Roberto ; Bhave, Gautam ; Hudson, Julie K. ; Hudson, Billy G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c702e498e6440dac6d4fc7a0ae063f7758824864ff024dfd7818d2f3e9c42a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Basement Membrane</topic><topic>chloride</topic><topic>Chlorides</topic><topic>collagen IV</topic><topic>Collagen Type IV - chemistry</topic><topic>extracellular matrix</topic><topic>Mammals</topic><topic>Mice</topic><topic>NC1 domain</topic><topic>phylogeny</topic><topic>protein evolution</topic><topic>protein self-assembly</topic><topic>protein stability</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - analysis</topic><topic>small molecule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudko, Sergei P.</creatorcontrib><creatorcontrib>Ailsworth, Octavia</creatorcontrib><creatorcontrib>Bryant, ZaKylah</creatorcontrib><creatorcontrib>Cole, Camryn</creatorcontrib><creatorcontrib>Edward, Jacob</creatorcontrib><creatorcontrib>Edwards, Di’Andra</creatorcontrib><creatorcontrib>Farrar, Sydney</creatorcontrib><creatorcontrib>Gallup, Julianna</creatorcontrib><creatorcontrib>Gallup, Michael</creatorcontrib><creatorcontrib>Gergis, Martina</creatorcontrib><creatorcontrib>Holt, Aalia</creatorcontrib><creatorcontrib>Lach, Madeline</creatorcontrib><creatorcontrib>Leaf, Elizabeth</creatorcontrib><creatorcontrib>Mahoney, Finn</creatorcontrib><creatorcontrib>McFarlin, Max</creatorcontrib><creatorcontrib>Moran, Monica</creatorcontrib><creatorcontrib>Murphy, Galeesa</creatorcontrib><creatorcontrib>Myers, Charlotte</creatorcontrib><creatorcontrib>Ni, Connie</creatorcontrib><creatorcontrib>Redhair, Neve</creatorcontrib><creatorcontrib>Rosa, Rocio</creatorcontrib><creatorcontrib>Servidio, Olivia</creatorcontrib><creatorcontrib>Sockbeson, Jaeden</creatorcontrib><creatorcontrib>Taylor, Lauren</creatorcontrib><creatorcontrib>Pedchenko, Vadim K.</creatorcontrib><creatorcontrib>Pokidysheva, Elena N.</creatorcontrib><creatorcontrib>Budko, Alena M.</creatorcontrib><creatorcontrib>Baugh, Rachel</creatorcontrib><creatorcontrib>Coates, P. Toby</creatorcontrib><creatorcontrib>Fidler, Aaron L.</creatorcontrib><creatorcontrib>Hudson, Heather M.</creatorcontrib><creatorcontrib>Ivanov, Sergey V.</creatorcontrib><creatorcontrib>Luer, Carl</creatorcontrib><creatorcontrib>Pedchenko, Tetyana</creatorcontrib><creatorcontrib>Preston, Robert L.</creatorcontrib><creatorcontrib>Rafi, Mohamed</creatorcontrib><creatorcontrib>Vanacore, Roberto</creatorcontrib><creatorcontrib>Bhave, Gautam</creatorcontrib><creatorcontrib>Hudson, Julie K.</creatorcontrib><creatorcontrib>Hudson, Billy G.</creatorcontrib><creatorcontrib>Aspirnauts</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudko, Sergei P.</au><au>Ailsworth, Octavia</au><au>Bryant, ZaKylah</au><au>Cole, Camryn</au><au>Edward, Jacob</au><au>Edwards, Di’Andra</au><au>Farrar, Sydney</au><au>Gallup, Julianna</au><au>Gallup, Michael</au><au>Gergis, Martina</au><au>Holt, Aalia</au><au>Lach, Madeline</au><au>Leaf, Elizabeth</au><au>Mahoney, Finn</au><au>McFarlin, Max</au><au>Moran, Monica</au><au>Murphy, Galeesa</au><au>Myers, Charlotte</au><au>Ni, Connie</au><au>Redhair, Neve</au><au>Rosa, Rocio</au><au>Servidio, Olivia</au><au>Sockbeson, Jaeden</au><au>Taylor, Lauren</au><au>Pedchenko, Vadim K.</au><au>Pokidysheva, Elena N.</au><au>Budko, Alena M.</au><au>Baugh, Rachel</au><au>Coates, P. Toby</au><au>Fidler, Aaron L.</au><au>Hudson, Heather M.</au><au>Ivanov, Sergey V.</au><au>Luer, Carl</au><au>Pedchenko, Tetyana</au><au>Preston, Robert L.</au><au>Rafi, Mohamed</au><au>Vanacore, Roberto</au><au>Bhave, Gautam</au><au>Hudson, Julie K.</au><au>Hudson, Billy G.</au><aucorp>Aspirnauts</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-11</date><risdate>2023</risdate><volume>299</volume><issue>11</issue><spage>105318</spage><epage>105318</epage><pages>105318-105318</pages><artnum>105318</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Collagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues—a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IVα121, collagen IVα345, and collagen IVα121–α556. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues. First, Cl− activates a molecular switch within trimeric NC1 domains that initiates protomer oligomerization, forming an NC1 hexamer between adjoining protomers. Second, Cl− stabilizes the hexamer structure. Whether this Cl−-dependent mechanism is of fundamental importance in animal evolution is unknown. Here, we developed a simple in vitro method of SDS-PAGE to determine the role of solution Cl− in hexamer stability. Hexamers were characterized from 34 animal species across 15 major phyla, including the basal Cnidarian and Ctenophora phyla. We found that solution Cl− stabilized the quaternary hexamer structure across all phyla except Ctenophora, Ecdysozoa, and Rotifera. Further analysis of hexamers from peroxidasin knockout mice, a model for decreasing hexamer crosslinks, showed that solution Cl− also stabilized the hexamer surface conformation. The presence of sufficient chloride concentration in solution or “chloride pressure” dynamically maintains the native form of the hexamer. Collectively, our findings revealed that chloride pressure on the outside of cells is a primordial innovation that drives and maintains the quaternary and conformational structure of NC1 hexamers of collagen IV scaffolds.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37797699</pmid><doi>10.1016/j.jbc.2023.105318</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8983-5802</orcidid><orcidid>https://orcid.org/0000-0002-6379-2151</orcidid><orcidid>https://orcid.org/0009-0009-6034-1425</orcidid><orcidid>https://orcid.org/0000-0001-6167-6678</orcidid><orcidid>https://orcid.org/0000-0003-3856-4859</orcidid><orcidid>https://orcid.org/0009-0007-2535-5798</orcidid><orcidid>https://orcid.org/0000-0002-2519-8864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-11, Vol.299 (11), p.105318-105318, Article 105318
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_2874262025
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Basement Membrane
chloride
Chlorides
collagen IV
Collagen Type IV - chemistry
extracellular matrix
Mammals
Mice
NC1 domain
phylogeny
protein evolution
protein self-assembly
protein stability
Protein Structure, Tertiary
Protein Subunits - analysis
small molecule
title Collagen IV of basement membranes: III. Chloride pressure is a primordial innovation that drives and maintains the assembly of scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20IV%20of%20basement%20membranes:%20III.%20Chloride%20pressure%20is%20a%20primordial%20innovation%20that%20drives%20and%20maintains%20the%20assembly%20of%20scaffolds&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Boudko,%20Sergei%20P.&rft.aucorp=Aspirnauts&rft.date=2023-11&rft.volume=299&rft.issue=11&rft.spage=105318&rft.epage=105318&rft.pages=105318-105318&rft.artnum=105318&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.105318&rft_dat=%3Cproquest_cross%3E2874262025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874262025&rft_id=info:pmid/37797699&rft_els_id=S0021925823023463&rfr_iscdi=true