Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations

Many of the world's agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus). Methods to derive the underlyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heredity 2023-12, Vol.131 (5-6), p.350-360
Hauptverfasser: Warburton, Christie L, Costilla, Roy, Engle, Bailey N, Moore, Stephen S, Corbet, Nicholas J, Fordyce, Geoffry, McGowan, Michael R, Burns, Brian M, Hayes, Ben J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 5-6
container_start_page 350
container_title Heredity
container_volume 131
creator Warburton, Christie L
Costilla, Roy
Engle, Bailey N
Moore, Stephen S
Corbet, Nicholas J
Fordyce, Geoffry
McGowan, Michael R
Burns, Brian M
Hayes, Ben J
description Many of the world's agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus). Methods to derive the underlying genetic architecture for these two subspecies are essential to develop accurate genomic predictions in these hybrid populations. We propose a novel method to achieve this. First, we use haplotypes to assign SNP alleles to ancestral subspecies of origin in a multi-breed and multi-subspecies population. Then we use a BayesR framework to allow SNP alleles originating from the different subspecies differing effects. Applying this method in a composite population of B. indicus and B. taurus hybrids, our results show that there are underlying genomic differences between the two subspecies, and these effects are not identified in multi-breed genomic evaluations that do not account for subspecies of origin effects. The method slightly improved the accuracy of genomic prediction. More significantly, by allocating SNP alleles to ancestral subspecies of origin, we were able to identify four SNP with high posterior probabilities of inclusion that have not been previously associated with cattle fertility and were close to genes associated with fertility in other species. These results show that haplotypes can be used to trace subspecies of origin through the genome of this hybrid population and, in conjunction with our novel Bayesian analysis, subspecies SNP allele allocation can be used to increase the accuracy of QTL association mapping in genetically diverse populations.
doi_str_mv 10.1038/s41437-023-00651-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874259884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874259884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-72e0eb4efebf27359ba505308963a6fa40aa8b5b0ab18b08c13709f82afca243</originalsourceid><addsrcrecordid>eNpdkU1LHTEUhkOp6K36B7qQQDdupj35miRLuWhbELpx4S4kY6ZGMpMxH8r9987ttV10deDwvC-H8yD0mcBXAkx9K5xwJjugrAPoBen4B7QhrBcdFRw-og0AUR308v4EfSrlCQCYpPoYnTAptWK036C4TfPQcvZzjTs82WUJ82_83OxcQ7U1vHhcsw0VxzQEbEtZx7pOc8FjThOeWqxhiR6X5srih-ALfg31Mcz4cedyeMBLWlo8RM7Q0Whj8efv8xTd3VzfbX90t7--_9xe3XYDk6J2knrwjvvRu5FKJrSzAgQDpXtm-9FysFY54cA6ohyogTAJelTUjoOlnJ2iy0PtktNz86WaKZTBx2hnn1oxVElOhVZqj375D31KLc_rcYZqAN1rLslK0QM15FRK9qNZcphs3hkCZq_CHFSYVYX5o8Lsqy_eq5ub_MO_yN_fszeo4Yc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900969471</pqid></control><display><type>article</type><title>Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations</title><source>MEDLINE</source><source>Nature</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Warburton, Christie L ; Costilla, Roy ; Engle, Bailey N ; Moore, Stephen S ; Corbet, Nicholas J ; Fordyce, Geoffry ; McGowan, Michael R ; Burns, Brian M ; Hayes, Ben J</creator><creatorcontrib>Warburton, Christie L ; Costilla, Roy ; Engle, Bailey N ; Moore, Stephen S ; Corbet, Nicholas J ; Fordyce, Geoffry ; McGowan, Michael R ; Burns, Brian M ; Hayes, Ben J</creatorcontrib><description>Many of the world's agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus). Methods to derive the underlying genetic architecture for these two subspecies are essential to develop accurate genomic predictions in these hybrid populations. We propose a novel method to achieve this. First, we use haplotypes to assign SNP alleles to ancestral subspecies of origin in a multi-breed and multi-subspecies population. Then we use a BayesR framework to allow SNP alleles originating from the different subspecies differing effects. Applying this method in a composite population of B. indicus and B. taurus hybrids, our results show that there are underlying genomic differences between the two subspecies, and these effects are not identified in multi-breed genomic evaluations that do not account for subspecies of origin effects. The method slightly improved the accuracy of genomic prediction. More significantly, by allocating SNP alleles to ancestral subspecies of origin, we were able to identify four SNP with high posterior probabilities of inclusion that have not been previously associated with cattle fertility and were close to genes associated with fertility in other species. These results show that haplotypes can be used to trace subspecies of origin through the genome of this hybrid population and, in conjunction with our novel Bayesian analysis, subspecies SNP allele allocation can be used to increase the accuracy of QTL association mapping in genetically diverse populations.</description><identifier>ISSN: 0018-067X</identifier><identifier>ISSN: 1365-2540</identifier><identifier>EISSN: 1365-2540</identifier><identifier>DOI: 10.1038/s41437-023-00651-4</identifier><identifier>PMID: 37798326</identifier><language>eng</language><publisher>England: Springer Nature B.V</publisher><subject>Alleles ; Animal populations ; Animals ; Bayes Theorem ; Bayesian analysis ; Biomarkers ; Bos taurus indicus ; Bos taurus taurus ; Cattle ; Cattle - genetics ; Chromosome Mapping ; Fertility ; Gene mapping ; Genetic diversity ; Genomics ; Haplotypes ; Hybrids ; Mapping ; Polymorphism, Single Nucleotide ; Population genetics ; Populations ; Quantitative Trait Loci ; Single-nucleotide polymorphism ; Tropical environment ; Tropical environments</subject><ispartof>Heredity, 2023-12, Vol.131 (5-6), p.350-360</ispartof><rights>2023. The Author(s).</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-72e0eb4efebf27359ba505308963a6fa40aa8b5b0ab18b08c13709f82afca243</citedby><cites>FETCH-LOGICAL-c375t-72e0eb4efebf27359ba505308963a6fa40aa8b5b0ab18b08c13709f82afca243</cites><orcidid>0000-0003-0818-5065 ; 0000-0003-3687-1580 ; 0000-0003-2360-1012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37798326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warburton, Christie L</creatorcontrib><creatorcontrib>Costilla, Roy</creatorcontrib><creatorcontrib>Engle, Bailey N</creatorcontrib><creatorcontrib>Moore, Stephen S</creatorcontrib><creatorcontrib>Corbet, Nicholas J</creatorcontrib><creatorcontrib>Fordyce, Geoffry</creatorcontrib><creatorcontrib>McGowan, Michael R</creatorcontrib><creatorcontrib>Burns, Brian M</creatorcontrib><creatorcontrib>Hayes, Ben J</creatorcontrib><title>Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations</title><title>Heredity</title><addtitle>Heredity (Edinb)</addtitle><description>Many of the world's agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus). Methods to derive the underlying genetic architecture for these two subspecies are essential to develop accurate genomic predictions in these hybrid populations. We propose a novel method to achieve this. First, we use haplotypes to assign SNP alleles to ancestral subspecies of origin in a multi-breed and multi-subspecies population. Then we use a BayesR framework to allow SNP alleles originating from the different subspecies differing effects. Applying this method in a composite population of B. indicus and B. taurus hybrids, our results show that there are underlying genomic differences between the two subspecies, and these effects are not identified in multi-breed genomic evaluations that do not account for subspecies of origin effects. The method slightly improved the accuracy of genomic prediction. More significantly, by allocating SNP alleles to ancestral subspecies of origin, we were able to identify four SNP with high posterior probabilities of inclusion that have not been previously associated with cattle fertility and were close to genes associated with fertility in other species. These results show that haplotypes can be used to trace subspecies of origin through the genome of this hybrid population and, in conjunction with our novel Bayesian analysis, subspecies SNP allele allocation can be used to increase the accuracy of QTL association mapping in genetically diverse populations.</description><subject>Alleles</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomarkers</subject><subject>Bos taurus indicus</subject><subject>Bos taurus taurus</subject><subject>Cattle</subject><subject>Cattle - genetics</subject><subject>Chromosome Mapping</subject><subject>Fertility</subject><subject>Gene mapping</subject><subject>Genetic diversity</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Hybrids</subject><subject>Mapping</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Quantitative Trait Loci</subject><subject>Single-nucleotide polymorphism</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><issn>0018-067X</issn><issn>1365-2540</issn><issn>1365-2540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1LHTEUhkOp6K36B7qQQDdupj35miRLuWhbELpx4S4kY6ZGMpMxH8r9987ttV10deDwvC-H8yD0mcBXAkx9K5xwJjugrAPoBen4B7QhrBcdFRw-og0AUR308v4EfSrlCQCYpPoYnTAptWK036C4TfPQcvZzjTs82WUJ82_83OxcQ7U1vHhcsw0VxzQEbEtZx7pOc8FjThOeWqxhiR6X5srih-ALfg31Mcz4cedyeMBLWlo8RM7Q0Whj8efv8xTd3VzfbX90t7--_9xe3XYDk6J2knrwjvvRu5FKJrSzAgQDpXtm-9FysFY54cA6ohyogTAJelTUjoOlnJ2iy0PtktNz86WaKZTBx2hnn1oxVElOhVZqj375D31KLc_rcYZqAN1rLslK0QM15FRK9qNZcphs3hkCZq_CHFSYVYX5o8Lsqy_eq5ub_MO_yN_fszeo4Yc4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Warburton, Christie L</creator><creator>Costilla, Roy</creator><creator>Engle, Bailey N</creator><creator>Moore, Stephen S</creator><creator>Corbet, Nicholas J</creator><creator>Fordyce, Geoffry</creator><creator>McGowan, Michael R</creator><creator>Burns, Brian M</creator><creator>Hayes, Ben J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0818-5065</orcidid><orcidid>https://orcid.org/0000-0003-3687-1580</orcidid><orcidid>https://orcid.org/0000-0003-2360-1012</orcidid></search><sort><creationdate>20231201</creationdate><title>Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations</title><author>Warburton, Christie L ; Costilla, Roy ; Engle, Bailey N ; Moore, Stephen S ; Corbet, Nicholas J ; Fordyce, Geoffry ; McGowan, Michael R ; Burns, Brian M ; Hayes, Ben J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-72e0eb4efebf27359ba505308963a6fa40aa8b5b0ab18b08c13709f82afca243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alleles</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomarkers</topic><topic>Bos taurus indicus</topic><topic>Bos taurus taurus</topic><topic>Cattle</topic><topic>Cattle - genetics</topic><topic>Chromosome Mapping</topic><topic>Fertility</topic><topic>Gene mapping</topic><topic>Genetic diversity</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Hybrids</topic><topic>Mapping</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Quantitative Trait Loci</topic><topic>Single-nucleotide polymorphism</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warburton, Christie L</creatorcontrib><creatorcontrib>Costilla, Roy</creatorcontrib><creatorcontrib>Engle, Bailey N</creatorcontrib><creatorcontrib>Moore, Stephen S</creatorcontrib><creatorcontrib>Corbet, Nicholas J</creatorcontrib><creatorcontrib>Fordyce, Geoffry</creatorcontrib><creatorcontrib>McGowan, Michael R</creatorcontrib><creatorcontrib>Burns, Brian M</creatorcontrib><creatorcontrib>Hayes, Ben J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warburton, Christie L</au><au>Costilla, Roy</au><au>Engle, Bailey N</au><au>Moore, Stephen S</au><au>Corbet, Nicholas J</au><au>Fordyce, Geoffry</au><au>McGowan, Michael R</au><au>Burns, Brian M</au><au>Hayes, Ben J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations</atitle><jtitle>Heredity</jtitle><addtitle>Heredity (Edinb)</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>131</volume><issue>5-6</issue><spage>350</spage><epage>360</epage><pages>350-360</pages><issn>0018-067X</issn><issn>1365-2540</issn><eissn>1365-2540</eissn><abstract>Many of the world's agriculturally important plant and animal populations consist of hybrids of subspecies. Cattle in tropical and sub-tropical regions for example, originate from two subspecies, Bos taurus indicus (Bos indicus) and Bos taurus taurus (Bos taurus). Methods to derive the underlying genetic architecture for these two subspecies are essential to develop accurate genomic predictions in these hybrid populations. We propose a novel method to achieve this. First, we use haplotypes to assign SNP alleles to ancestral subspecies of origin in a multi-breed and multi-subspecies population. Then we use a BayesR framework to allow SNP alleles originating from the different subspecies differing effects. Applying this method in a composite population of B. indicus and B. taurus hybrids, our results show that there are underlying genomic differences between the two subspecies, and these effects are not identified in multi-breed genomic evaluations that do not account for subspecies of origin effects. The method slightly improved the accuracy of genomic prediction. More significantly, by allocating SNP alleles to ancestral subspecies of origin, we were able to identify four SNP with high posterior probabilities of inclusion that have not been previously associated with cattle fertility and were close to genes associated with fertility in other species. These results show that haplotypes can be used to trace subspecies of origin through the genome of this hybrid population and, in conjunction with our novel Bayesian analysis, subspecies SNP allele allocation can be used to increase the accuracy of QTL association mapping in genetically diverse populations.</abstract><cop>England</cop><pub>Springer Nature B.V</pub><pmid>37798326</pmid><doi>10.1038/s41437-023-00651-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0818-5065</orcidid><orcidid>https://orcid.org/0000-0003-3687-1580</orcidid><orcidid>https://orcid.org/0000-0003-2360-1012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-067X
ispartof Heredity, 2023-12, Vol.131 (5-6), p.350-360
issn 0018-067X
1365-2540
1365-2540
language eng
recordid cdi_proquest_miscellaneous_2874259884
source MEDLINE; Nature; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Alleles
Animal populations
Animals
Bayes Theorem
Bayesian analysis
Biomarkers
Bos taurus indicus
Bos taurus taurus
Cattle
Cattle - genetics
Chromosome Mapping
Fertility
Gene mapping
Genetic diversity
Genomics
Haplotypes
Hybrids
Mapping
Polymorphism, Single Nucleotide
Population genetics
Populations
Quantitative Trait Loci
Single-nucleotide polymorphism
Tropical environment
Tropical environments
title Concurrently mapping quantitative trait loci associations from multiple subspecies within hybrid populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concurrently%20mapping%20quantitative%20trait%20loci%20associations%20from%20multiple%20subspecies%20within%20hybrid%20populations&rft.jtitle=Heredity&rft.au=Warburton,%20Christie%20L&rft.date=2023-12-01&rft.volume=131&rft.issue=5-6&rft.spage=350&rft.epage=360&rft.pages=350-360&rft.issn=0018-067X&rft.eissn=1365-2540&rft_id=info:doi/10.1038/s41437-023-00651-4&rft_dat=%3Cproquest_cross%3E2874259884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900969471&rft_id=info:pmid/37798326&rfr_iscdi=true