Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion

Excessive production and accumulation of amyloid‐beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2023-12, Vol.238 (12), p.2812-2826
Hauptverfasser: Jeong, Jangho, Kim, Ok‐Hyeon, Shim, Jaeyeoung, Keum, Seula, Hwang, Ye Eun, Song, Seongeun, Kim, Jung‐Woong, Choi, Jee‐Hye, Lee, Hyun Jung, Rhee, Sangmyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 12
container_start_page 2812
container_title Journal of cellular physiology
container_volume 238
creator Jeong, Jangho
Kim, Ok‐Hyeon
Shim, Jaeyeoung
Keum, Seula
Hwang, Ye Eun
Song, Seongeun
Kim, Jung‐Woong
Choi, Jee‐Hye
Lee, Hyun Jung
Rhee, Sangmyung
description Excessive production and accumulation of amyloid‐beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)‐containing lysosomal vesicles. Under oxidative stress, both H4‐APPSwe/Ind and HEK293T‐APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha‐tubulin N‐acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β‐CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1‐positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein‐mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress–induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.
doi_str_mv 10.1002/jcp.31131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874259408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874259408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3481-f5a8c67ebfc1cc0e0506350d2012743a38a1a12513eab676aec2ca8b6b0b9bc23</originalsourceid><addsrcrecordid>eNp1kU1vFDEMhiNERbeFA38AReICh2ntZD6PaMWnWsEBzqMk40FZZTZLMmmZG1du_Mb-kma7LQckTpbtx69sv4w9RzhDAHG-MbsziSjxEVshdE1R1pV4zFa5h0VXlXjMTmLcAEDXSfmEHcumBZSiWbHfl9YEPyedHHFlaF6cmq3fcrsdkqGB64X7n3bIxSvicQ4UIw_0PWWMIo9JG3IuZ4EPNretTnfjfuRuiT76STl-RdEal_HRB66mxXk73Pz6o2lWPJIJtB95yo5G5SI9u4-n7Nu7t1_XH4qLz-8_rt9cFEaWLRZjpVpTN6RHg8YAQQW1rGAQgKIppZKtQoWiQklK102tyAijWl1r0J02Qp6yVwfdXfA_EsW5n2zcH6G25FPsRduUoupKaDP68h9041PY5u160QF2IFuETL0-UPmRMQYa-12wkwpLj9Dv_emzP_2dP5l9ca-Y9ETDX_LBkAycH4Br62j5v1L_af3lIHkLJDaeLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901903810</pqid></control><display><type>article</type><title>Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jeong, Jangho ; Kim, Ok‐Hyeon ; Shim, Jaeyeoung ; Keum, Seula ; Hwang, Ye Eun ; Song, Seongeun ; Kim, Jung‐Woong ; Choi, Jee‐Hye ; Lee, Hyun Jung ; Rhee, Sangmyung</creator><creatorcontrib>Jeong, Jangho ; Kim, Ok‐Hyeon ; Shim, Jaeyeoung ; Keum, Seula ; Hwang, Ye Eun ; Song, Seongeun ; Kim, Jung‐Woong ; Choi, Jee‐Hye ; Lee, Hyun Jung ; Rhee, Sangmyung</creatorcontrib><description>Excessive production and accumulation of amyloid‐beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)‐containing lysosomal vesicles. Under oxidative stress, both H4‐APPSwe/Ind and HEK293T‐APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha‐tubulin N‐acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β‐CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1‐positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein‐mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress–induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.31131</identifier><identifier>PMID: 37801327</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accumulation ; Acetylation ; Acetyltransferase ; Adenosine diphosphate ; ADP-ribosylation factor ; Alzheimer Disease - metabolism ; Alzheimer's disease ; Amyloid beta-Peptides - metabolism ; Amyloid beta-Protein Precursor - metabolism ; Amyloid precursor protein ; Animals ; Aβ secretion ; Cell Line ; Cell lines ; Dynein ; Hippocampus ; Humans ; Localization ; lysosomal vesicles ; Lysosomes - metabolism ; Mice ; microtubule acetylation ; Microtubules - metabolism ; Neurodegenerative diseases ; Oxidative Stress ; Ribosylation ; Secretion ; Tubulin ; Vesicles ; β-Amyloid</subject><ispartof>Journal of cellular physiology, 2023-12, Vol.238 (12), p.2812-2826</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3481-f5a8c67ebfc1cc0e0506350d2012743a38a1a12513eab676aec2ca8b6b0b9bc23</cites><orcidid>0000-0003-2733-2147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.31131$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.31131$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37801327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeong, Jangho</creatorcontrib><creatorcontrib>Kim, Ok‐Hyeon</creatorcontrib><creatorcontrib>Shim, Jaeyeoung</creatorcontrib><creatorcontrib>Keum, Seula</creatorcontrib><creatorcontrib>Hwang, Ye Eun</creatorcontrib><creatorcontrib>Song, Seongeun</creatorcontrib><creatorcontrib>Kim, Jung‐Woong</creatorcontrib><creatorcontrib>Choi, Jee‐Hye</creatorcontrib><creatorcontrib>Lee, Hyun Jung</creatorcontrib><creatorcontrib>Rhee, Sangmyung</creatorcontrib><title>Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Excessive production and accumulation of amyloid‐beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)‐containing lysosomal vesicles. Under oxidative stress, both H4‐APPSwe/Ind and HEK293T‐APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha‐tubulin N‐acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β‐CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1‐positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein‐mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress–induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.</description><subject>Accumulation</subject><subject>Acetylation</subject><subject>Acetyltransferase</subject><subject>Adenosine diphosphate</subject><subject>ADP-ribosylation factor</subject><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer's disease</subject><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>Amyloid precursor protein</subject><subject>Animals</subject><subject>Aβ secretion</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Dynein</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>Localization</subject><subject>lysosomal vesicles</subject><subject>Lysosomes - metabolism</subject><subject>Mice</subject><subject>microtubule acetylation</subject><subject>Microtubules - metabolism</subject><subject>Neurodegenerative diseases</subject><subject>Oxidative Stress</subject><subject>Ribosylation</subject><subject>Secretion</subject><subject>Tubulin</subject><subject>Vesicles</subject><subject>β-Amyloid</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1vFDEMhiNERbeFA38AReICh2ntZD6PaMWnWsEBzqMk40FZZTZLMmmZG1du_Mb-kma7LQckTpbtx69sv4w9RzhDAHG-MbsziSjxEVshdE1R1pV4zFa5h0VXlXjMTmLcAEDXSfmEHcumBZSiWbHfl9YEPyedHHFlaF6cmq3fcrsdkqGB64X7n3bIxSvicQ4UIw_0PWWMIo9JG3IuZ4EPNretTnfjfuRuiT76STl-RdEal_HRB66mxXk73Pz6o2lWPJIJtB95yo5G5SI9u4-n7Nu7t1_XH4qLz-8_rt9cFEaWLRZjpVpTN6RHg8YAQQW1rGAQgKIppZKtQoWiQklK102tyAijWl1r0J02Qp6yVwfdXfA_EsW5n2zcH6G25FPsRduUoupKaDP68h9041PY5u160QF2IFuETL0-UPmRMQYa-12wkwpLj9Dv_emzP_2dP5l9ca-Y9ETDX_LBkAycH4Br62j5v1L_af3lIHkLJDaeLw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Jeong, Jangho</creator><creator>Kim, Ok‐Hyeon</creator><creator>Shim, Jaeyeoung</creator><creator>Keum, Seula</creator><creator>Hwang, Ye Eun</creator><creator>Song, Seongeun</creator><creator>Kim, Jung‐Woong</creator><creator>Choi, Jee‐Hye</creator><creator>Lee, Hyun Jung</creator><creator>Rhee, Sangmyung</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2733-2147</orcidid></search><sort><creationdate>202312</creationdate><title>Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion</title><author>Jeong, Jangho ; Kim, Ok‐Hyeon ; Shim, Jaeyeoung ; Keum, Seula ; Hwang, Ye Eun ; Song, Seongeun ; Kim, Jung‐Woong ; Choi, Jee‐Hye ; Lee, Hyun Jung ; Rhee, Sangmyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3481-f5a8c67ebfc1cc0e0506350d2012743a38a1a12513eab676aec2ca8b6b0b9bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accumulation</topic><topic>Acetylation</topic><topic>Acetyltransferase</topic><topic>Adenosine diphosphate</topic><topic>ADP-ribosylation factor</topic><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer's disease</topic><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>Amyloid precursor protein</topic><topic>Animals</topic><topic>Aβ secretion</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Dynein</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>Localization</topic><topic>lysosomal vesicles</topic><topic>Lysosomes - metabolism</topic><topic>Mice</topic><topic>microtubule acetylation</topic><topic>Microtubules - metabolism</topic><topic>Neurodegenerative diseases</topic><topic>Oxidative Stress</topic><topic>Ribosylation</topic><topic>Secretion</topic><topic>Tubulin</topic><topic>Vesicles</topic><topic>β-Amyloid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Jangho</creatorcontrib><creatorcontrib>Kim, Ok‐Hyeon</creatorcontrib><creatorcontrib>Shim, Jaeyeoung</creatorcontrib><creatorcontrib>Keum, Seula</creatorcontrib><creatorcontrib>Hwang, Ye Eun</creatorcontrib><creatorcontrib>Song, Seongeun</creatorcontrib><creatorcontrib>Kim, Jung‐Woong</creatorcontrib><creatorcontrib>Choi, Jee‐Hye</creatorcontrib><creatorcontrib>Lee, Hyun Jung</creatorcontrib><creatorcontrib>Rhee, Sangmyung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Jangho</au><au>Kim, Ok‐Hyeon</au><au>Shim, Jaeyeoung</au><au>Keum, Seula</au><au>Hwang, Ye Eun</au><au>Song, Seongeun</au><au>Kim, Jung‐Woong</au><au>Choi, Jee‐Hye</au><au>Lee, Hyun Jung</au><au>Rhee, Sangmyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2023-12</date><risdate>2023</risdate><volume>238</volume><issue>12</issue><spage>2812</spage><epage>2826</epage><pages>2812-2826</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Excessive production and accumulation of amyloid‐beta (Aβ) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aβ production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aβ production and secretion by altering the subcellular distribution of Aβ precursor protein (APP)‐containing lysosomal vesicles. Under oxidative stress, both H4‐APPSwe/Ind and HEK293T‐APPSwe/Ind cell lines showed increased microtubule acetylation and Aβ secretion. Knockdown (KD) of alpha‐tubulin N‐acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as β‐CTF and AICD, but also suppressed Aβ secretion. Oxidative stress promoted the dispersion of LAMP1‐positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein‐mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aβ secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aβ plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress–induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aβ secretion.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37801327</pmid><doi>10.1002/jcp.31131</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2733-2147</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2023-12, Vol.238 (12), p.2812-2826
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2874259408
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Accumulation
Acetylation
Acetyltransferase
Adenosine diphosphate
ADP-ribosylation factor
Alzheimer Disease - metabolism
Alzheimer's disease
Amyloid beta-Peptides - metabolism
Amyloid beta-Protein Precursor - metabolism
Amyloid precursor protein
Animals
Aβ secretion
Cell Line
Cell lines
Dynein
Hippocampus
Humans
Localization
lysosomal vesicles
Lysosomes - metabolism
Mice
microtubule acetylation
Microtubules - metabolism
Neurodegenerative diseases
Oxidative Stress
Ribosylation
Secretion
Tubulin
Vesicles
β-Amyloid
title Microtubule acetylation induced by oxidative stress regulates subcellular distribution of lysosomal vesicles for amyloid‐beta secretion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule%20acetylation%20induced%20by%20oxidative%20stress%20regulates%20subcellular%20distribution%20of%20lysosomal%20vesicles%20for%20amyloid%E2%80%90beta%20secretion&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Jeong,%20Jangho&rft.date=2023-12&rft.volume=238&rft.issue=12&rft.spage=2812&rft.epage=2826&rft.pages=2812-2826&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.31131&rft_dat=%3Cproquest_cross%3E2874259408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901903810&rft_id=info:pmid/37801327&rfr_iscdi=true