Suppression of IRF9 Promotes Osteoclast Differentiation by Decreased Ferroptosis via STAT3 Activation

Osteoporosis is a chronic disease that endangers the health of the elderly. Inhibiting osteoclast hyperactivity is a key aspect of osteoporosis prevention and treatment. Several studies have shown that interferon regulatory factor 9 (IRF9) not only regulates innate and adaptive immune responses but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammation 2024-02, Vol.47 (1), p.99-113
Hauptverfasser: Lan, Chao, Zhou, Xuan, Shen, Ximei, Lin, Youfen, Chen, Xiaoyuan, Lin, Jiebin, Zhang, Yongze, Zheng, Lifeng, Yan, Sunjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 99
container_title Inflammation
container_volume 47
creator Lan, Chao
Zhou, Xuan
Shen, Ximei
Lin, Youfen
Chen, Xiaoyuan
Lin, Jiebin
Zhang, Yongze
Zheng, Lifeng
Yan, Sunjie
description Osteoporosis is a chronic disease that endangers the health of the elderly. Inhibiting osteoclast hyperactivity is a key aspect of osteoporosis prevention and treatment. Several studies have shown that interferon regulatory factor 9 (IRF9) not only regulates innate and adaptive immune responses but also plays an important role in inflammation, antiviral response, and cell development. However, the exact role of IRF9 in osteoclasts has not been reported. To elucidate the role of IRF9 in osteoclast differentiation, we established the ovariectomized mouse model of postmenopausal osteoporosis and found that IRF9 expression was reduced in ovariectomized mice with overactive osteoclasts. Furthermore, knockdown of IRF9 expression enhanced osteoclast differentiation in vitro. Using RNA sequencing, we identified that the differentially expressed genes enriched by IRF9 knockdown were related to ferroptosis. We observed that IRF9 knockdown promoted osteoclast differentiation via decreased ferroptosis in vitro and further verified that IRF9 knockdown reduced ferroptosis by activating signal transducer and activator of transcription 3 (STAT3) to promote osteoclastogenesis. In conclusion, we identified an essential role of IRF9 in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.
doi_str_mv 10.1007/s10753-023-01896-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874258768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916502002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-aec783f0ea8788e0623e62ca7e1a09359ff9cc150b50ea4767e7b576a52389583</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EakPKH-CALHHhsjC2469j1DZQqVJRG86W486irZL14tmt1H9fp2mpxIHDaA7zzDsfL2MfBXwVAPYbCbBaNSBrCOdNI96wmdBWNVJb85bNQBlolPf2mL0nugMA5506YsfKOlgswMwY3kzDUJCoyz3PLb-4Xnn-s-RdHpH4FY2Y0zbSyM-6tsWC_djFcc9uHvgZpoKR8JavsJQ8jJk64vdd5Dfr5VrxZRq7-yf6hL1r45bww3Oes1-r8_Xpj-by6vvF6fKyScrqsYmYrFMtYHTWOQQjFRqZokURwSvt29anJDRsdGUW1li0m3pq1FI5r52asy8H3aHkPxPSGHYdJdxuY495oiCdXUjtrNmjn_9B7_JU-rpdkF4YDRLqY-dMHqhUMlHBNgyl28XyEASEvQnhYEKobHgyIYja9OlZetrs8PZvy8vXK6AOANVS_xvL6-z_yD4CPc6RXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916502002</pqid></control><display><type>article</type><title>Suppression of IRF9 Promotes Osteoclast Differentiation by Decreased Ferroptosis via STAT3 Activation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Lan, Chao ; Zhou, Xuan ; Shen, Ximei ; Lin, Youfen ; Chen, Xiaoyuan ; Lin, Jiebin ; Zhang, Yongze ; Zheng, Lifeng ; Yan, Sunjie</creator><creatorcontrib>Lan, Chao ; Zhou, Xuan ; Shen, Ximei ; Lin, Youfen ; Chen, Xiaoyuan ; Lin, Jiebin ; Zhang, Yongze ; Zheng, Lifeng ; Yan, Sunjie</creatorcontrib><description>Osteoporosis is a chronic disease that endangers the health of the elderly. Inhibiting osteoclast hyperactivity is a key aspect of osteoporosis prevention and treatment. Several studies have shown that interferon regulatory factor 9 (IRF9) not only regulates innate and adaptive immune responses but also plays an important role in inflammation, antiviral response, and cell development. However, the exact role of IRF9 in osteoclasts has not been reported. To elucidate the role of IRF9 in osteoclast differentiation, we established the ovariectomized mouse model of postmenopausal osteoporosis and found that IRF9 expression was reduced in ovariectomized mice with overactive osteoclasts. Furthermore, knockdown of IRF9 expression enhanced osteoclast differentiation in vitro. Using RNA sequencing, we identified that the differentially expressed genes enriched by IRF9 knockdown were related to ferroptosis. We observed that IRF9 knockdown promoted osteoclast differentiation via decreased ferroptosis in vitro and further verified that IRF9 knockdown reduced ferroptosis by activating signal transducer and activator of transcription 3 (STAT3) to promote osteoclastogenesis. In conclusion, we identified an essential role of IRF9 in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.</description><identifier>ISSN: 0360-3997</identifier><identifier>EISSN: 1573-2576</identifier><identifier>DOI: 10.1007/s10753-023-01896-1</identifier><identifier>PMID: 37804406</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aged ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Bone Resorption - metabolism ; Cell Differentiation ; Chronic illnesses ; Ferroptosis ; Humans ; Hyperactivity ; Immune response ; Immunology ; Interferon regulatory factor ; Interferon-Stimulated Gene Factor 3, gamma Subunit - metabolism ; Internal Medicine ; Mice ; Osteoclastogenesis ; Osteoclasts ; Osteoclasts - metabolism ; Osteogenesis ; Osteoporosis ; Osteoporosis - metabolism ; Ovariectomy ; Pathology ; Pharmacology/Toxicology ; Post-menopause ; RANK Ligand - metabolism ; Rheumatology ; Signal Transduction ; Stat3 protein ; STAT3 Transcription Factor - metabolism</subject><ispartof>Inflammation, 2024-02, Vol.47 (1), p.99-113</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-aec783f0ea8788e0623e62ca7e1a09359ff9cc150b50ea4767e7b576a52389583</citedby><cites>FETCH-LOGICAL-c375t-aec783f0ea8788e0623e62ca7e1a09359ff9cc150b50ea4767e7b576a52389583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10753-023-01896-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10753-023-01896-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37804406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Chao</creatorcontrib><creatorcontrib>Zhou, Xuan</creatorcontrib><creatorcontrib>Shen, Ximei</creatorcontrib><creatorcontrib>Lin, Youfen</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><creatorcontrib>Lin, Jiebin</creatorcontrib><creatorcontrib>Zhang, Yongze</creatorcontrib><creatorcontrib>Zheng, Lifeng</creatorcontrib><creatorcontrib>Yan, Sunjie</creatorcontrib><title>Suppression of IRF9 Promotes Osteoclast Differentiation by Decreased Ferroptosis via STAT3 Activation</title><title>Inflammation</title><addtitle>Inflammation</addtitle><addtitle>Inflammation</addtitle><description>Osteoporosis is a chronic disease that endangers the health of the elderly. Inhibiting osteoclast hyperactivity is a key aspect of osteoporosis prevention and treatment. Several studies have shown that interferon regulatory factor 9 (IRF9) not only regulates innate and adaptive immune responses but also plays an important role in inflammation, antiviral response, and cell development. However, the exact role of IRF9 in osteoclasts has not been reported. To elucidate the role of IRF9 in osteoclast differentiation, we established the ovariectomized mouse model of postmenopausal osteoporosis and found that IRF9 expression was reduced in ovariectomized mice with overactive osteoclasts. Furthermore, knockdown of IRF9 expression enhanced osteoclast differentiation in vitro. Using RNA sequencing, we identified that the differentially expressed genes enriched by IRF9 knockdown were related to ferroptosis. We observed that IRF9 knockdown promoted osteoclast differentiation via decreased ferroptosis in vitro and further verified that IRF9 knockdown reduced ferroptosis by activating signal transducer and activator of transcription 3 (STAT3) to promote osteoclastogenesis. In conclusion, we identified an essential role of IRF9 in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.</description><subject>Aged</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone Resorption - metabolism</subject><subject>Cell Differentiation</subject><subject>Chronic illnesses</subject><subject>Ferroptosis</subject><subject>Humans</subject><subject>Hyperactivity</subject><subject>Immune response</subject><subject>Immunology</subject><subject>Interferon regulatory factor</subject><subject>Interferon-Stimulated Gene Factor 3, gamma Subunit - metabolism</subject><subject>Internal Medicine</subject><subject>Mice</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteoclasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Osteoporosis - metabolism</subject><subject>Ovariectomy</subject><subject>Pathology</subject><subject>Pharmacology/Toxicology</subject><subject>Post-menopause</subject><subject>RANK Ligand - metabolism</subject><subject>Rheumatology</subject><subject>Signal Transduction</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><issn>0360-3997</issn><issn>1573-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kU1vEzEQhi0EakPKH-CALHHhsjC2469j1DZQqVJRG86W486irZL14tmt1H9fp2mpxIHDaA7zzDsfL2MfBXwVAPYbCbBaNSBrCOdNI96wmdBWNVJb85bNQBlolPf2mL0nugMA5506YsfKOlgswMwY3kzDUJCoyz3PLb-4Xnn-s-RdHpH4FY2Y0zbSyM-6tsWC_djFcc9uHvgZpoKR8JavsJQ8jJk64vdd5Dfr5VrxZRq7-yf6hL1r45bww3Oes1-r8_Xpj-by6vvF6fKyScrqsYmYrFMtYHTWOQQjFRqZokURwSvt29anJDRsdGUW1li0m3pq1FI5r52asy8H3aHkPxPSGHYdJdxuY495oiCdXUjtrNmjn_9B7_JU-rpdkF4YDRLqY-dMHqhUMlHBNgyl28XyEASEvQnhYEKobHgyIYja9OlZetrs8PZvy8vXK6AOANVS_xvL6-z_yD4CPc6RXQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lan, Chao</creator><creator>Zhou, Xuan</creator><creator>Shen, Ximei</creator><creator>Lin, Youfen</creator><creator>Chen, Xiaoyuan</creator><creator>Lin, Jiebin</creator><creator>Zhang, Yongze</creator><creator>Zheng, Lifeng</creator><creator>Yan, Sunjie</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20240201</creationdate><title>Suppression of IRF9 Promotes Osteoclast Differentiation by Decreased Ferroptosis via STAT3 Activation</title><author>Lan, Chao ; Zhou, Xuan ; Shen, Ximei ; Lin, Youfen ; Chen, Xiaoyuan ; Lin, Jiebin ; Zhang, Yongze ; Zheng, Lifeng ; Yan, Sunjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-aec783f0ea8788e0623e62ca7e1a09359ff9cc150b50ea4767e7b576a52389583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone Resorption - metabolism</topic><topic>Cell Differentiation</topic><topic>Chronic illnesses</topic><topic>Ferroptosis</topic><topic>Humans</topic><topic>Hyperactivity</topic><topic>Immune response</topic><topic>Immunology</topic><topic>Interferon regulatory factor</topic><topic>Interferon-Stimulated Gene Factor 3, gamma Subunit - metabolism</topic><topic>Internal Medicine</topic><topic>Mice</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteoclasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Osteoporosis - metabolism</topic><topic>Ovariectomy</topic><topic>Pathology</topic><topic>Pharmacology/Toxicology</topic><topic>Post-menopause</topic><topic>RANK Ligand - metabolism</topic><topic>Rheumatology</topic><topic>Signal Transduction</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Chao</creatorcontrib><creatorcontrib>Zhou, Xuan</creatorcontrib><creatorcontrib>Shen, Ximei</creatorcontrib><creatorcontrib>Lin, Youfen</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><creatorcontrib>Lin, Jiebin</creatorcontrib><creatorcontrib>Zhang, Yongze</creatorcontrib><creatorcontrib>Zheng, Lifeng</creatorcontrib><creatorcontrib>Yan, Sunjie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Inflammation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Chao</au><au>Zhou, Xuan</au><au>Shen, Ximei</au><au>Lin, Youfen</au><au>Chen, Xiaoyuan</au><au>Lin, Jiebin</au><au>Zhang, Yongze</au><au>Zheng, Lifeng</au><au>Yan, Sunjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of IRF9 Promotes Osteoclast Differentiation by Decreased Ferroptosis via STAT3 Activation</atitle><jtitle>Inflammation</jtitle><stitle>Inflammation</stitle><addtitle>Inflammation</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>47</volume><issue>1</issue><spage>99</spage><epage>113</epage><pages>99-113</pages><issn>0360-3997</issn><eissn>1573-2576</eissn><abstract>Osteoporosis is a chronic disease that endangers the health of the elderly. Inhibiting osteoclast hyperactivity is a key aspect of osteoporosis prevention and treatment. Several studies have shown that interferon regulatory factor 9 (IRF9) not only regulates innate and adaptive immune responses but also plays an important role in inflammation, antiviral response, and cell development. However, the exact role of IRF9 in osteoclasts has not been reported. To elucidate the role of IRF9 in osteoclast differentiation, we established the ovariectomized mouse model of postmenopausal osteoporosis and found that IRF9 expression was reduced in ovariectomized mice with overactive osteoclasts. Furthermore, knockdown of IRF9 expression enhanced osteoclast differentiation in vitro. Using RNA sequencing, we identified that the differentially expressed genes enriched by IRF9 knockdown were related to ferroptosis. We observed that IRF9 knockdown promoted osteoclast differentiation via decreased ferroptosis in vitro and further verified that IRF9 knockdown reduced ferroptosis by activating signal transducer and activator of transcription 3 (STAT3) to promote osteoclastogenesis. In conclusion, we identified an essential role of IRF9 in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37804406</pmid><doi>10.1007/s10753-023-01896-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3997
ispartof Inflammation, 2024-02, Vol.47 (1), p.99-113
issn 0360-3997
1573-2576
language eng
recordid cdi_proquest_miscellaneous_2874258768
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aged
Animals
Biomedical and Life Sciences
Biomedicine
Bone Resorption - metabolism
Cell Differentiation
Chronic illnesses
Ferroptosis
Humans
Hyperactivity
Immune response
Immunology
Interferon regulatory factor
Interferon-Stimulated Gene Factor 3, gamma Subunit - metabolism
Internal Medicine
Mice
Osteoclastogenesis
Osteoclasts
Osteoclasts - metabolism
Osteogenesis
Osteoporosis
Osteoporosis - metabolism
Ovariectomy
Pathology
Pharmacology/Toxicology
Post-menopause
RANK Ligand - metabolism
Rheumatology
Signal Transduction
Stat3 protein
STAT3 Transcription Factor - metabolism
title Suppression of IRF9 Promotes Osteoclast Differentiation by Decreased Ferroptosis via STAT3 Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20IRF9%20Promotes%20Osteoclast%20Differentiation%20by%20Decreased%20Ferroptosis%20via%20STAT3%20Activation&rft.jtitle=Inflammation&rft.au=Lan,%20Chao&rft.date=2024-02-01&rft.volume=47&rft.issue=1&rft.spage=99&rft.epage=113&rft.pages=99-113&rft.issn=0360-3997&rft.eissn=1573-2576&rft_id=info:doi/10.1007/s10753-023-01896-1&rft_dat=%3Cproquest_cross%3E2916502002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2916502002&rft_id=info:pmid/37804406&rfr_iscdi=true