Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase
Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2023-12, Vol.29 (70), p.e202302555-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 70 |
container_start_page | e202302555 |
container_title | Chemistry : a European journal |
container_volume | 29 |
creator | Nin‐Hill, Alba Ardevol, Albert Biarnés, Xevi Planas, Antoni Rovira, Carme |
description | Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes.
A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out. |
doi_str_mv | 10.1002/chem.202302555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874258411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901596315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</originalsourceid><addsrcrecordid>eNqFkMtu1DAUQC1ERYfCliWyxIZNptevOF7CaGCQiirxWLCynOR6SJXYxU5UZccn8C18SD-CLyGjKUViw8q61rlHV4eQZwzWDICfN19xWHPgArhS6gFZMcVZIXSpHpIVGKmLUglzSh7nfAUAphTiETkVugKpmF6RL5sYxhR7Gj39ONV5TG5Eunz6mAY3djHQeqa7uU1xj4G-jqHtwp52gTr6AUfXhcN4-_PX9x_b0MZ9Pzcxd63L-ISceNdnfHr3npHPb7afNrvi4vLtu82ri6KRTKjCg_egK_QGGqmZ8yC1Ur5lIKUXWEmUpmW1bA0KLwQC47I2rTYlQOmxEmfk5dF7neK3CfNohy432PcuYJyy5ZWWXFWSsQV98Q96FacUlussN8DUUoephVofqSbFnBN6e526waXZMrCH6PYQ3d5HXxae32mnesD2Hv9TeQHMEbjpepz_o7Ob3fb9X_lvgCiO6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901596315</pqid></control><display><type>article</type><title>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nin‐Hill, Alba ; Ardevol, Albert ; Biarnés, Xevi ; Planas, Antoni ; Rovira, Carme</creator><creatorcontrib>Nin‐Hill, Alba ; Ardevol, Albert ; Biarnés, Xevi ; Planas, Antoni ; Rovira, Carme</creatorcontrib><description>Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes.
A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202302555</identifier><identifier>PMID: 37804517</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ab initio molecular dynamics ; carbohydrate conformations ; carbohydrate-active enzymes ; Catalysis ; Cellulose ; Chemistry ; Conformation ; Crystallography ; Crystallography, X-Ray ; Depolymerization ; Distortion ; enzyme catalysis ; Enzymes ; Glucans ; Glycosidases ; Glycoside Hydrolases - metabolism ; Hydrogen Bonding ; Hydrogen bonds ; Industrial applications ; Intermediates ; Molecular dynamics ; Molecular Dynamics Simulation ; Nucleophiles ; Polysaccharides ; Protein Conformation ; Quantum mechanics ; Reaction intermediates ; Saccharides ; Substrate Specificity ; Substrates ; Sugar ; Sugars</subject><ispartof>Chemistry : a European journal, 2023-12, Vol.29 (70), p.e202302555-n/a</ispartof><rights>2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</citedby><cites>FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</cites><orcidid>0000-0002-8670-9031 ; 0000-0001-7073-3320 ; 0000-0003-1477-5010 ; 0000-0003-4121-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202302555$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202302555$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37804517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nin‐Hill, Alba</creatorcontrib><creatorcontrib>Ardevol, Albert</creatorcontrib><creatorcontrib>Biarnés, Xevi</creatorcontrib><creatorcontrib>Planas, Antoni</creatorcontrib><creatorcontrib>Rovira, Carme</creatorcontrib><title>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes.
A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.</description><subject>ab initio molecular dynamics</subject><subject>carbohydrate conformations</subject><subject>carbohydrate-active enzymes</subject><subject>Catalysis</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>Conformation</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Depolymerization</subject><subject>Distortion</subject><subject>enzyme catalysis</subject><subject>Enzymes</subject><subject>Glucans</subject><subject>Glycosidases</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Industrial applications</subject><subject>Intermediates</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleophiles</subject><subject>Polysaccharides</subject><subject>Protein Conformation</subject><subject>Quantum mechanics</subject><subject>Reaction intermediates</subject><subject>Saccharides</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Sugars</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkMtu1DAUQC1ERYfCliWyxIZNptevOF7CaGCQiirxWLCynOR6SJXYxU5UZccn8C18SD-CLyGjKUViw8q61rlHV4eQZwzWDICfN19xWHPgArhS6gFZMcVZIXSpHpIVGKmLUglzSh7nfAUAphTiETkVugKpmF6RL5sYxhR7Gj39ONV5TG5Eunz6mAY3djHQeqa7uU1xj4G-jqHtwp52gTr6AUfXhcN4-_PX9x_b0MZ9Pzcxd63L-ISceNdnfHr3npHPb7afNrvi4vLtu82ri6KRTKjCg_egK_QGGqmZ8yC1Ur5lIKUXWEmUpmW1bA0KLwQC47I2rTYlQOmxEmfk5dF7neK3CfNohy432PcuYJyy5ZWWXFWSsQV98Q96FacUlussN8DUUoephVofqSbFnBN6e526waXZMrCH6PYQ3d5HXxae32mnesD2Hv9TeQHMEbjpepz_o7Ob3fb9X_lvgCiO6w</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Nin‐Hill, Alba</creator><creator>Ardevol, Albert</creator><creator>Biarnés, Xevi</creator><creator>Planas, Antoni</creator><creator>Rovira, Carme</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8670-9031</orcidid><orcidid>https://orcid.org/0000-0001-7073-3320</orcidid><orcidid>https://orcid.org/0000-0003-1477-5010</orcidid><orcidid>https://orcid.org/0000-0003-4121-9474</orcidid></search><sort><creationdate>20231214</creationdate><title>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</title><author>Nin‐Hill, Alba ; Ardevol, Albert ; Biarnés, Xevi ; Planas, Antoni ; Rovira, Carme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ab initio molecular dynamics</topic><topic>carbohydrate conformations</topic><topic>carbohydrate-active enzymes</topic><topic>Catalysis</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>Conformation</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Depolymerization</topic><topic>Distortion</topic><topic>enzyme catalysis</topic><topic>Enzymes</topic><topic>Glucans</topic><topic>Glycosidases</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Industrial applications</topic><topic>Intermediates</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleophiles</topic><topic>Polysaccharides</topic><topic>Protein Conformation</topic><topic>Quantum mechanics</topic><topic>Reaction intermediates</topic><topic>Saccharides</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Sugars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nin‐Hill, Alba</creatorcontrib><creatorcontrib>Ardevol, Albert</creatorcontrib><creatorcontrib>Biarnés, Xevi</creatorcontrib><creatorcontrib>Planas, Antoni</creatorcontrib><creatorcontrib>Rovira, Carme</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nin‐Hill, Alba</au><au>Ardevol, Albert</au><au>Biarnés, Xevi</au><au>Planas, Antoni</au><au>Rovira, Carme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>29</volume><issue>70</issue><spage>e202302555</spage><epage>n/a</epage><pages>e202302555-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes.
A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37804517</pmid><doi>10.1002/chem.202302555</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8670-9031</orcidid><orcidid>https://orcid.org/0000-0001-7073-3320</orcidid><orcidid>https://orcid.org/0000-0003-1477-5010</orcidid><orcidid>https://orcid.org/0000-0003-4121-9474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2023-12, Vol.29 (70), p.e202302555-n/a |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2874258411 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | ab initio molecular dynamics carbohydrate conformations carbohydrate-active enzymes Catalysis Cellulose Chemistry Conformation Crystallography Crystallography, X-Ray Depolymerization Distortion enzyme catalysis Enzymes Glucans Glycosidases Glycoside Hydrolases - metabolism Hydrogen Bonding Hydrogen bonds Industrial applications Intermediates Molecular dynamics Molecular Dynamics Simulation Nucleophiles Polysaccharides Protein Conformation Quantum mechanics Reaction intermediates Saccharides Substrate Specificity Substrates Sugar Sugars |
title | Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Substrate%20Conformation%20by%20Hydrogen%20Bonding%20in%20a%20Retaining%20%CE%B2%E2%80%90Endoglycosidase&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Nin%E2%80%90Hill,%20Alba&rft.date=2023-12-14&rft.volume=29&rft.issue=70&rft.spage=e202302555&rft.epage=n/a&rft.pages=e202302555-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202302555&rft_dat=%3Cproquest_cross%3E2901596315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901596315&rft_id=info:pmid/37804517&rfr_iscdi=true |