Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase

Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2023-12, Vol.29 (70), p.e202302555-n/a
Hauptverfasser: Nin‐Hill, Alba, Ardevol, Albert, Biarnés, Xevi, Planas, Antoni, Rovira, Carme
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 70
container_start_page e202302555
container_title Chemistry : a European journal
container_volume 29
creator Nin‐Hill, Alba
Ardevol, Albert
Biarnés, Xevi
Planas, Antoni
Rovira, Carme
description Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes. A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.
doi_str_mv 10.1002/chem.202302555
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2874258411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901596315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</originalsourceid><addsrcrecordid>eNqFkMtu1DAUQC1ERYfCliWyxIZNptevOF7CaGCQiirxWLCynOR6SJXYxU5UZccn8C18SD-CLyGjKUViw8q61rlHV4eQZwzWDICfN19xWHPgArhS6gFZMcVZIXSpHpIVGKmLUglzSh7nfAUAphTiETkVugKpmF6RL5sYxhR7Gj39ONV5TG5Eunz6mAY3djHQeqa7uU1xj4G-jqHtwp52gTr6AUfXhcN4-_PX9x_b0MZ9Pzcxd63L-ISceNdnfHr3npHPb7afNrvi4vLtu82ri6KRTKjCg_egK_QGGqmZ8yC1Ur5lIKUXWEmUpmW1bA0KLwQC47I2rTYlQOmxEmfk5dF7neK3CfNohy432PcuYJyy5ZWWXFWSsQV98Q96FacUlussN8DUUoephVofqSbFnBN6e526waXZMrCH6PYQ3d5HXxae32mnesD2Hv9TeQHMEbjpepz_o7Ob3fb9X_lvgCiO6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901596315</pqid></control><display><type>article</type><title>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nin‐Hill, Alba ; Ardevol, Albert ; Biarnés, Xevi ; Planas, Antoni ; Rovira, Carme</creator><creatorcontrib>Nin‐Hill, Alba ; Ardevol, Albert ; Biarnés, Xevi ; Planas, Antoni ; Rovira, Carme</creatorcontrib><description>Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes. A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202302555</identifier><identifier>PMID: 37804517</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ab initio molecular dynamics ; carbohydrate conformations ; carbohydrate-active enzymes ; Catalysis ; Cellulose ; Chemistry ; Conformation ; Crystallography ; Crystallography, X-Ray ; Depolymerization ; Distortion ; enzyme catalysis ; Enzymes ; Glucans ; Glycosidases ; Glycoside Hydrolases - metabolism ; Hydrogen Bonding ; Hydrogen bonds ; Industrial applications ; Intermediates ; Molecular dynamics ; Molecular Dynamics Simulation ; Nucleophiles ; Polysaccharides ; Protein Conformation ; Quantum mechanics ; Reaction intermediates ; Saccharides ; Substrate Specificity ; Substrates ; Sugar ; Sugars</subject><ispartof>Chemistry : a European journal, 2023-12, Vol.29 (70), p.e202302555-n/a</ispartof><rights>2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</citedby><cites>FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</cites><orcidid>0000-0002-8670-9031 ; 0000-0001-7073-3320 ; 0000-0003-1477-5010 ; 0000-0003-4121-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202302555$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202302555$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37804517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nin‐Hill, Alba</creatorcontrib><creatorcontrib>Ardevol, Albert</creatorcontrib><creatorcontrib>Biarnés, Xevi</creatorcontrib><creatorcontrib>Planas, Antoni</creatorcontrib><creatorcontrib>Rovira, Carme</creatorcontrib><title>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes. A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.</description><subject>ab initio molecular dynamics</subject><subject>carbohydrate conformations</subject><subject>carbohydrate-active enzymes</subject><subject>Catalysis</subject><subject>Cellulose</subject><subject>Chemistry</subject><subject>Conformation</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Depolymerization</subject><subject>Distortion</subject><subject>enzyme catalysis</subject><subject>Enzymes</subject><subject>Glucans</subject><subject>Glycosidases</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Industrial applications</subject><subject>Intermediates</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleophiles</subject><subject>Polysaccharides</subject><subject>Protein Conformation</subject><subject>Quantum mechanics</subject><subject>Reaction intermediates</subject><subject>Saccharides</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Sugars</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkMtu1DAUQC1ERYfCliWyxIZNptevOF7CaGCQiirxWLCynOR6SJXYxU5UZccn8C18SD-CLyGjKUViw8q61rlHV4eQZwzWDICfN19xWHPgArhS6gFZMcVZIXSpHpIVGKmLUglzSh7nfAUAphTiETkVugKpmF6RL5sYxhR7Gj39ONV5TG5Eunz6mAY3djHQeqa7uU1xj4G-jqHtwp52gTr6AUfXhcN4-_PX9x_b0MZ9Pzcxd63L-ISceNdnfHr3npHPb7afNrvi4vLtu82ri6KRTKjCg_egK_QGGqmZ8yC1Ur5lIKUXWEmUpmW1bA0KLwQC47I2rTYlQOmxEmfk5dF7neK3CfNohy432PcuYJyy5ZWWXFWSsQV98Q96FacUlussN8DUUoephVofqSbFnBN6e526waXZMrCH6PYQ3d5HXxae32mnesD2Hv9TeQHMEbjpepz_o7Ob3fb9X_lvgCiO6w</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Nin‐Hill, Alba</creator><creator>Ardevol, Albert</creator><creator>Biarnés, Xevi</creator><creator>Planas, Antoni</creator><creator>Rovira, Carme</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8670-9031</orcidid><orcidid>https://orcid.org/0000-0001-7073-3320</orcidid><orcidid>https://orcid.org/0000-0003-1477-5010</orcidid><orcidid>https://orcid.org/0000-0003-4121-9474</orcidid></search><sort><creationdate>20231214</creationdate><title>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</title><author>Nin‐Hill, Alba ; Ardevol, Albert ; Biarnés, Xevi ; Planas, Antoni ; Rovira, Carme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-f0ff078ef90c471af04755fd1044f3e84e49d1b4d9e3f33e0124b9d796006fe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ab initio molecular dynamics</topic><topic>carbohydrate conformations</topic><topic>carbohydrate-active enzymes</topic><topic>Catalysis</topic><topic>Cellulose</topic><topic>Chemistry</topic><topic>Conformation</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Depolymerization</topic><topic>Distortion</topic><topic>enzyme catalysis</topic><topic>Enzymes</topic><topic>Glucans</topic><topic>Glycosidases</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Industrial applications</topic><topic>Intermediates</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleophiles</topic><topic>Polysaccharides</topic><topic>Protein Conformation</topic><topic>Quantum mechanics</topic><topic>Reaction intermediates</topic><topic>Saccharides</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Sugars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nin‐Hill, Alba</creatorcontrib><creatorcontrib>Ardevol, Albert</creatorcontrib><creatorcontrib>Biarnés, Xevi</creatorcontrib><creatorcontrib>Planas, Antoni</creatorcontrib><creatorcontrib>Rovira, Carme</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nin‐Hill, Alba</au><au>Ardevol, Albert</au><au>Biarnés, Xevi</au><au>Planas, Antoni</au><au>Rovira, Carme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>29</volume><issue>70</issue><spage>e202302555</spage><epage>n/a</epage><pages>e202302555-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Bacterial β‐glycosidases are hydrolytic enzymes that depolymerize polysaccharides such as β‐cellulose, β‐glucans and β‐xylans from different sources, offering diverse biomedical and industrial uses. It has been shown that a conformational change of the substrate, from a relaxed 4C1 conformation to a distorted 1S3/1,4B conformation of the reactive sugar, is necessary for catalysis. However, the molecular determinants that stabilize the substrate's distortion are poorly understood. Here we use quantum mechanics/molecular mechanics (QM/MM)‐based molecular dynamics methods to assess the impact of the interaction between the reactive sugar, i. e. the one at subsite −1, and the catalytic nucleophile (a glutamate) on substrate conformation. We show that the hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation: its presence preserves sugar distortion, whereas its absence (e.g. in an enzyme mutant) knocks it out. We also show that 2‐deoxy‐2‐fluoro derivatives, widely used to trap the reaction intermediates by X‐ray crystallography, reproduce the conformation of the hydrolysable substrate at the experimental conditions. These results highlight the importance of the 2‐OH⋅⋅⋅nucleophile interaction in substrate recognition and catalysis in endo‐glycosidases and can inform mutational campaigns aimed to search for more efficient enzymes. A hydrogen bond involving the C2 exocyclic group and the nucleophile controls substrate conformation in a glycosidase: its presence preserves sugar distortion, whereas its absence (e.g. in enzyme mutants) knocks it out.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37804517</pmid><doi>10.1002/chem.202302555</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8670-9031</orcidid><orcidid>https://orcid.org/0000-0001-7073-3320</orcidid><orcidid>https://orcid.org/0000-0003-1477-5010</orcidid><orcidid>https://orcid.org/0000-0003-4121-9474</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2023-12, Vol.29 (70), p.e202302555-n/a
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2874258411
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects ab initio molecular dynamics
carbohydrate conformations
carbohydrate-active enzymes
Catalysis
Cellulose
Chemistry
Conformation
Crystallography
Crystallography, X-Ray
Depolymerization
Distortion
enzyme catalysis
Enzymes
Glucans
Glycosidases
Glycoside Hydrolases - metabolism
Hydrogen Bonding
Hydrogen bonds
Industrial applications
Intermediates
Molecular dynamics
Molecular Dynamics Simulation
Nucleophiles
Polysaccharides
Protein Conformation
Quantum mechanics
Reaction intermediates
Saccharides
Substrate Specificity
Substrates
Sugar
Sugars
title Control of Substrate Conformation by Hydrogen Bonding in a Retaining β‐Endoglycosidase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Substrate%20Conformation%20by%20Hydrogen%20Bonding%20in%20a%20Retaining%20%CE%B2%E2%80%90Endoglycosidase&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Nin%E2%80%90Hill,%20Alba&rft.date=2023-12-14&rft.volume=29&rft.issue=70&rft.spage=e202302555&rft.epage=n/a&rft.pages=e202302555-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202302555&rft_dat=%3Cproquest_cross%3E2901596315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901596315&rft_id=info:pmid/37804517&rfr_iscdi=true