Ceramic-Polymer Electrolytes for All-Solid-State Lithium Rechargeable Batteries
New polyurethane acrylate (PUA)-based nanoceramic-polymer electrolytes in a high ceramic filler content were examined in all-solid-state lithium-polymer cells (Li/PUA-SiO2/Li0.33MnO2) and at 60DGC. The composite electrolyte containing more than 20 wt % hydrophilic nano-SiO2 enhanced its mechanical s...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2005, Vol.152 (4), p.A767-A773 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A773 |
---|---|
container_issue | 4 |
container_start_page | A767 |
container_title | Journal of the Electrochemical Society |
container_volume | 152 |
creator | Jiang, Guoxin Maeda, Seiji Saito, Yoichiro Tanase, Shigeo Sakai, Tetsuo |
description | New polyurethane acrylate (PUA)-based nanoceramic-polymer electrolytes in a high ceramic filler content were examined in all-solid-state lithium-polymer cells (Li/PUA-SiO2/Li0.33MnO2) and at 60DGC. The composite electrolyte containing more than 20 wt % hydrophilic nano-SiO2 enhanced its mechanical strength 600% compared to the ceramic-free electrolyte. The additions of nano-SiO2 powders in a high concentration protected the electrode surfaces, improved greatly the interfacial stability between composite cathode and the electrolyte, and gave rise to a further reversible lithium stripping-deposition process. The cells showed good rate capacity and excellent cyclability. The discharge capacity kept 65% of initial capacity after 300 cycles with a coulombic efficiency approaching 100%. Capacity fading upon cycling was believed to be due to the increase of cell resistance during charge-discharge cycling. The cell self-charge loss at 60DGC was extremely low about 0.05% per day. |
doi_str_mv | 10.1149/1.1865892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28741919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28741919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-6ebb6f1df7b97e6cc0d810f7cd334b3e1784ee3cada28f8d8d638426c0e6c8493</originalsourceid><addsrcrecordid>eNotkM1OAjEURrvQREQXvsGsTFwU505L21kiwZ-EBCO6bjrtrdR0HGzLgrcXAqsvJzn5FoeQO6gnALx9hAkoMVVtc0FGdQ2McjGFK3Kd888BQXE5Iqs5JtMHS9-HuO8xVYuItqQDFMyVH1I1i5GuhxgcXRdTsFqGsgm7vvpAuzHpG00XsXoypWAKmG_IpTcx4-15x-TrefE5f6XL1cvbfLaklglZqMCuEx6cl10rUVhbOwW1l9YxxjuGIBVHZNY40yivnHKCKd4IWx9kxVs2Jven320a_naYi-5Dthij-cVhl3WjJIcWjuLDSbRpyDmh19sUepP2Gmp9zKRBnzOxf6thXNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28741919</pqid></control><display><type>article</type><title>Ceramic-Polymer Electrolytes for All-Solid-State Lithium Rechargeable Batteries</title><source>IOP Publishing Journals</source><creator>Jiang, Guoxin ; Maeda, Seiji ; Saito, Yoichiro ; Tanase, Shigeo ; Sakai, Tetsuo</creator><creatorcontrib>Jiang, Guoxin ; Maeda, Seiji ; Saito, Yoichiro ; Tanase, Shigeo ; Sakai, Tetsuo</creatorcontrib><description>New polyurethane acrylate (PUA)-based nanoceramic-polymer electrolytes in a high ceramic filler content were examined in all-solid-state lithium-polymer cells (Li/PUA-SiO2/Li0.33MnO2) and at 60DGC. The composite electrolyte containing more than 20 wt % hydrophilic nano-SiO2 enhanced its mechanical strength 600% compared to the ceramic-free electrolyte. The additions of nano-SiO2 powders in a high concentration protected the electrode surfaces, improved greatly the interfacial stability between composite cathode and the electrolyte, and gave rise to a further reversible lithium stripping-deposition process. The cells showed good rate capacity and excellent cyclability. The discharge capacity kept 65% of initial capacity after 300 cycles with a coulombic efficiency approaching 100%. Capacity fading upon cycling was believed to be due to the increase of cell resistance during charge-discharge cycling. The cell self-charge loss at 60DGC was extremely low about 0.05% per day.</description><identifier>ISSN: 0013-4651</identifier><identifier>DOI: 10.1149/1.1865892</identifier><language>eng</language><ispartof>Journal of the Electrochemical Society, 2005, Vol.152 (4), p.A767-A773</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-6ebb6f1df7b97e6cc0d810f7cd334b3e1784ee3cada28f8d8d638426c0e6c8493</citedby><cites>FETCH-LOGICAL-c367t-6ebb6f1df7b97e6cc0d810f7cd334b3e1784ee3cada28f8d8d638426c0e6c8493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Jiang, Guoxin</creatorcontrib><creatorcontrib>Maeda, Seiji</creatorcontrib><creatorcontrib>Saito, Yoichiro</creatorcontrib><creatorcontrib>Tanase, Shigeo</creatorcontrib><creatorcontrib>Sakai, Tetsuo</creatorcontrib><title>Ceramic-Polymer Electrolytes for All-Solid-State Lithium Rechargeable Batteries</title><title>Journal of the Electrochemical Society</title><description>New polyurethane acrylate (PUA)-based nanoceramic-polymer electrolytes in a high ceramic filler content were examined in all-solid-state lithium-polymer cells (Li/PUA-SiO2/Li0.33MnO2) and at 60DGC. The composite electrolyte containing more than 20 wt % hydrophilic nano-SiO2 enhanced its mechanical strength 600% compared to the ceramic-free electrolyte. The additions of nano-SiO2 powders in a high concentration protected the electrode surfaces, improved greatly the interfacial stability between composite cathode and the electrolyte, and gave rise to a further reversible lithium stripping-deposition process. The cells showed good rate capacity and excellent cyclability. The discharge capacity kept 65% of initial capacity after 300 cycles with a coulombic efficiency approaching 100%. Capacity fading upon cycling was believed to be due to the increase of cell resistance during charge-discharge cycling. The cell self-charge loss at 60DGC was extremely low about 0.05% per day.</description><issn>0013-4651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkM1OAjEURrvQREQXvsGsTFwU505L21kiwZ-EBCO6bjrtrdR0HGzLgrcXAqsvJzn5FoeQO6gnALx9hAkoMVVtc0FGdQ2McjGFK3Kd888BQXE5Iqs5JtMHS9-HuO8xVYuItqQDFMyVH1I1i5GuhxgcXRdTsFqGsgm7vvpAuzHpG00XsXoypWAKmG_IpTcx4-15x-TrefE5f6XL1cvbfLaklglZqMCuEx6cl10rUVhbOwW1l9YxxjuGIBVHZNY40yivnHKCKd4IWx9kxVs2Jven320a_naYi-5Dthij-cVhl3WjJIcWjuLDSbRpyDmh19sUepP2Gmp9zKRBnzOxf6thXNI</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Jiang, Guoxin</creator><creator>Maeda, Seiji</creator><creator>Saito, Yoichiro</creator><creator>Tanase, Shigeo</creator><creator>Sakai, Tetsuo</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2005</creationdate><title>Ceramic-Polymer Electrolytes for All-Solid-State Lithium Rechargeable Batteries</title><author>Jiang, Guoxin ; Maeda, Seiji ; Saito, Yoichiro ; Tanase, Shigeo ; Sakai, Tetsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-6ebb6f1df7b97e6cc0d810f7cd334b3e1784ee3cada28f8d8d638426c0e6c8493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Guoxin</creatorcontrib><creatorcontrib>Maeda, Seiji</creatorcontrib><creatorcontrib>Saito, Yoichiro</creatorcontrib><creatorcontrib>Tanase, Shigeo</creatorcontrib><creatorcontrib>Sakai, Tetsuo</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Guoxin</au><au>Maeda, Seiji</au><au>Saito, Yoichiro</au><au>Tanase, Shigeo</au><au>Sakai, Tetsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ceramic-Polymer Electrolytes for All-Solid-State Lithium Rechargeable Batteries</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2005</date><risdate>2005</risdate><volume>152</volume><issue>4</issue><spage>A767</spage><epage>A773</epage><pages>A767-A773</pages><issn>0013-4651</issn><abstract>New polyurethane acrylate (PUA)-based nanoceramic-polymer electrolytes in a high ceramic filler content were examined in all-solid-state lithium-polymer cells (Li/PUA-SiO2/Li0.33MnO2) and at 60DGC. The composite electrolyte containing more than 20 wt % hydrophilic nano-SiO2 enhanced its mechanical strength 600% compared to the ceramic-free electrolyte. The additions of nano-SiO2 powders in a high concentration protected the electrode surfaces, improved greatly the interfacial stability between composite cathode and the electrolyte, and gave rise to a further reversible lithium stripping-deposition process. The cells showed good rate capacity and excellent cyclability. The discharge capacity kept 65% of initial capacity after 300 cycles with a coulombic efficiency approaching 100%. Capacity fading upon cycling was believed to be due to the increase of cell resistance during charge-discharge cycling. The cell self-charge loss at 60DGC was extremely low about 0.05% per day.</abstract><doi>10.1149/1.1865892</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 2005, Vol.152 (4), p.A767-A773 |
issn | 0013-4651 |
language | eng |
recordid | cdi_proquest_miscellaneous_28741919 |
source | IOP Publishing Journals |
title | Ceramic-Polymer Electrolytes for All-Solid-State Lithium Rechargeable Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ceramic-Polymer%20Electrolytes%20for%20All-Solid-State%20Lithium%20Rechargeable%20Batteries&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=Jiang,%20Guoxin&rft.date=2005&rft.volume=152&rft.issue=4&rft.spage=A767&rft.epage=A773&rft.pages=A767-A773&rft.issn=0013-4651&rft_id=info:doi/10.1149/1.1865892&rft_dat=%3Cproquest_cross%3E28741919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28741919&rft_id=info:pmid/&rfr_iscdi=true |