Connections between two-variable Bernstein and Jacobi polynomials on the triangle

Connection coefficients between the two-variable Bernstein and Jacobi polynomial families on the triangle are given explicitly as evaluations of two-variable Hahn polynomials. Dual two-variable Bernstein polynomials are introduced. Explicit formula in terms of two-variable Jacobi polynomials and a r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2006-12, Vol.197 (2), p.520-533
Hauptverfasser: Lewanowicz, Stanisław, Woźny, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 2
container_start_page 520
container_title Journal of computational and applied mathematics
container_volume 197
creator Lewanowicz, Stanisław
Woźny, Paweł
description Connection coefficients between the two-variable Bernstein and Jacobi polynomial families on the triangle are given explicitly as evaluations of two-variable Hahn polynomials. Dual two-variable Bernstein polynomials are introduced. Explicit formula in terms of two-variable Jacobi polynomials and a recurrence relation are given.
doi_str_mv 10.1016/j.cam.2005.11.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28740418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042705006977</els_id><sourcerecordid>28740418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-78c15adfbce9367ba54d2bf175bc7e1a8972d5251d6d8f1ca8511e938aedd8433</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNte9LZrZr-SxZMWPymIoOeQTWY1ZTepybal_96UFrx5Ghie9x3mIeQSaAYU6ptFpuSQ5ZRWGUBGoTgiE-CsSYExfkwmtGAspWXOTslZCAtKad1AOSHvM2ctqtE4G5IWxw2iTcaNS9fSG9n2mNyjt2FEYxNpdfIqlWtNsnT91rrByD4kLga-MRkjb796PCcnXVzjxWFOyefjw8fsOZ2_Pb3M7uapKms2powrqKTuWoVNUbNWVqXO2w5Y1SqGIHnDcl3lFeha8w6U5BVARLlErXlZFFNyve9devezwjCKwQSFfS8tulUQOWclLYFHEPag8i4Ej51YejNIvxVAxU6eWIgoT-zkCQAR5cXM1aFcBiX7zkurTPgL8qKpOZSRu91zGD9dG_QiKINWoTY-WhXamX-u_AIg7oVd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28740418</pqid></control><display><type>article</type><title>Connections between two-variable Bernstein and Jacobi polynomials on the triangle</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lewanowicz, Stanisław ; Woźny, Paweł</creator><creatorcontrib>Lewanowicz, Stanisław ; Woźny, Paweł</creatorcontrib><description>Connection coefficients between the two-variable Bernstein and Jacobi polynomial families on the triangle are given explicitly as evaluations of two-variable Hahn polynomials. Dual two-variable Bernstein polynomials are introduced. Explicit formula in terms of two-variable Jacobi polynomials and a recurrence relation are given.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2005.11.013</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Connection relations ; Difference and functional equations, recurrence relations ; Dual two-variable Bernstein polynomials ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Special functions ; Two-variable Bernstein polynomials ; Two-variable Hahn polynomials ; Two-variable Jacobi polynomials</subject><ispartof>Journal of computational and applied mathematics, 2006-12, Vol.197 (2), p.520-533</ispartof><rights>2005 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-78c15adfbce9367ba54d2bf175bc7e1a8972d5251d6d8f1ca8511e938aedd8433</citedby><cites>FETCH-LOGICAL-c467t-78c15adfbce9367ba54d2bf175bc7e1a8972d5251d6d8f1ca8511e938aedd8433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042705006977$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18396814$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewanowicz, Stanisław</creatorcontrib><creatorcontrib>Woźny, Paweł</creatorcontrib><title>Connections between two-variable Bernstein and Jacobi polynomials on the triangle</title><title>Journal of computational and applied mathematics</title><description>Connection coefficients between the two-variable Bernstein and Jacobi polynomial families on the triangle are given explicitly as evaluations of two-variable Hahn polynomials. Dual two-variable Bernstein polynomials are introduced. Explicit formula in terms of two-variable Jacobi polynomials and a recurrence relation are given.</description><subject>Connection relations</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Dual two-variable Bernstein polynomials</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Two-variable Bernstein polynomials</subject><subject>Two-variable Hahn polynomials</subject><subject>Two-variable Jacobi polynomials</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNte9LZrZr-SxZMWPymIoOeQTWY1ZTepybal_96UFrx5Ghie9x3mIeQSaAYU6ptFpuSQ5ZRWGUBGoTgiE-CsSYExfkwmtGAspWXOTslZCAtKad1AOSHvM2ctqtE4G5IWxw2iTcaNS9fSG9n2mNyjt2FEYxNpdfIqlWtNsnT91rrByD4kLga-MRkjb796PCcnXVzjxWFOyefjw8fsOZ2_Pb3M7uapKms2powrqKTuWoVNUbNWVqXO2w5Y1SqGIHnDcl3lFeha8w6U5BVARLlErXlZFFNyve9devezwjCKwQSFfS8tulUQOWclLYFHEPag8i4Ej51YejNIvxVAxU6eWIgoT-zkCQAR5cXM1aFcBiX7zkurTPgL8qKpOZSRu91zGD9dG_QiKINWoTY-WhXamX-u_AIg7oVd</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Lewanowicz, Stanisław</creator><creator>Woźny, Paweł</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061215</creationdate><title>Connections between two-variable Bernstein and Jacobi polynomials on the triangle</title><author>Lewanowicz, Stanisław ; Woźny, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-78c15adfbce9367ba54d2bf175bc7e1a8972d5251d6d8f1ca8511e938aedd8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Connection relations</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Dual two-variable Bernstein polynomials</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Two-variable Bernstein polynomials</topic><topic>Two-variable Hahn polynomials</topic><topic>Two-variable Jacobi polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewanowicz, Stanisław</creatorcontrib><creatorcontrib>Woźny, Paweł</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewanowicz, Stanisław</au><au>Woźny, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connections between two-variable Bernstein and Jacobi polynomials on the triangle</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2006-12-15</date><risdate>2006</risdate><volume>197</volume><issue>2</issue><spage>520</spage><epage>533</epage><pages>520-533</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>Connection coefficients between the two-variable Bernstein and Jacobi polynomial families on the triangle are given explicitly as evaluations of two-variable Hahn polynomials. Dual two-variable Bernstein polynomials are introduced. Explicit formula in terms of two-variable Jacobi polynomials and a recurrence relation are given.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2005.11.013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2006-12, Vol.197 (2), p.520-533
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28740418
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Connection relations
Difference and functional equations, recurrence relations
Dual two-variable Bernstein polynomials
Exact sciences and technology
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Special functions
Two-variable Bernstein polynomials
Two-variable Hahn polynomials
Two-variable Jacobi polynomials
title Connections between two-variable Bernstein and Jacobi polynomials on the triangle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connections%20between%20two-variable%20Bernstein%20and%20Jacobi%20polynomials%20on%20the%20triangle&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Lewanowicz,%20Stanis%C5%82aw&rft.date=2006-12-15&rft.volume=197&rft.issue=2&rft.spage=520&rft.epage=533&rft.pages=520-533&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2005.11.013&rft_dat=%3Cproquest_cross%3E28740418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28740418&rft_id=info:pmid/&rft_els_id=S0377042705006977&rfr_iscdi=true