A 1.3-GHz fifth-generation SPARC64 microprocessor
A fifth-generation SPARC64 processor is fabricated in 130-nm partially depleted silicon-on-insulator CMOS with eight layers of Cu metallization. At V/sub dd/ = 1.2 V and T/sub a/ = 25/spl deg/C, it runs at 1.3 GHz and dissipates 34.7 W. The chip contains 191 M transistors with 19 M logic circuits in...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2003-11, Vol.38 (11), p.1896-1905 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1905 |
---|---|
container_issue | 11 |
container_start_page | 1896 |
container_title | IEEE journal of solid-state circuits |
container_volume | 38 |
creator | Ando, H. Yoshida, Y. Inoue, A. Sugiyama, I. Asakawa, T. Morita, K. Muta, T. Motokurumada, T. Okada, S. Yamashita, H. Satsukawa, Y. Konmoto, A. Yamashita, R. Sugiyama, H. |
description | A fifth-generation SPARC64 processor is fabricated in 130-nm partially depleted silicon-on-insulator CMOS with eight layers of Cu metallization. At V/sub dd/ = 1.2 V and T/sub a/ = 25/spl deg/C, it runs at 1.3 GHz and dissipates 34.7 W. The chip contains 191 M transistors with 19 M logic circuits in an area of 18.14 mm /spl times/ 15.99 mm and is covered with 5858 bumps, of which 269 are for I/O signals. It is mounted in a 1360-pin land-grid-array package. The 16-byte-wide system bus operates with a 260-MHz clock in single-data-rate or double-data-rate modes. This processor implements an error-detection mechanism for execution units and data path logic circuits in addition to on-chip arrays to detect data corruption. Intermittent errors detected in execution units and data paths are recovered via instruction retry. A soft barrier clocking scheme allows amortization of the clock skew and jitter over multiple cycles and helps to achieve high clock frequency. Tunability of the clock timing makes timing closure easier. A relatively small amount of custom circuit design and the use of mostly static circuits contributes to achieve short development time. |
doi_str_mv | 10.1109/JSSC.2003.818146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28737933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1240969</ieee_id><sourcerecordid>28737933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-d6be33e80eef6629c1e6f251d9d2efdeff8ce4c35a452800ef9920ae35ae20323</originalsourceid><addsrcrecordid>eNqN0UFLwzAUB_AgCs7pXfAyPIiX1ry8NE2OY-imCIpT8BZq96Id2zqT7qCf3pQKggfdKST5vZfw_owdA08BuLm4mU5HqeAcUw0apNphPcgynUCOz7usxznoxMT7fXYQwjxupdTQYzAcQIrJePI5cJVr3pJXWpEvmqpeDab3w4eRkoNlVfp67euSQqj9IdtzxSLQ0ffaZ09Xl4-jSXJ7N74eDW-TUsq8SWbqhRBJcyKnlDAlkHIig5mZCXIzck6XJEvMCpkJzTk5E79XUDwgwVFgn511fePL7xsKjV1WoaTFolhRvQlWGG64BP4_1BoB83wLmGNuELeAoHOJOsLzPyGoHNBozNqep7_ovN74VZygNUKoDCEzEfEOxYGH4MnZta-Whf-wwG0bs21jtm3Mtos5lpx0JRUR_XAhuVEGvwAizJ-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922653159</pqid></control><display><type>article</type><title>A 1.3-GHz fifth-generation SPARC64 microprocessor</title><source>IEEE Electronic Library (IEL)</source><creator>Ando, H. ; Yoshida, Y. ; Inoue, A. ; Sugiyama, I. ; Asakawa, T. ; Morita, K. ; Muta, T. ; Motokurumada, T. ; Okada, S. ; Yamashita, H. ; Satsukawa, Y. ; Konmoto, A. ; Yamashita, R. ; Sugiyama, H.</creator><creatorcontrib>Ando, H. ; Yoshida, Y. ; Inoue, A. ; Sugiyama, I. ; Asakawa, T. ; Morita, K. ; Muta, T. ; Motokurumada, T. ; Okada, S. ; Yamashita, H. ; Satsukawa, Y. ; Konmoto, A. ; Yamashita, R. ; Sugiyama, H.</creatorcontrib><description>A fifth-generation SPARC64 processor is fabricated in 130-nm partially depleted silicon-on-insulator CMOS with eight layers of Cu metallization. At V/sub dd/ = 1.2 V and T/sub a/ = 25/spl deg/C, it runs at 1.3 GHz and dissipates 34.7 W. The chip contains 191 M transistors with 19 M logic circuits in an area of 18.14 mm /spl times/ 15.99 mm and is covered with 5858 bumps, of which 269 are for I/O signals. It is mounted in a 1360-pin land-grid-array package. The 16-byte-wide system bus operates with a 260-MHz clock in single-data-rate or double-data-rate modes. This processor implements an error-detection mechanism for execution units and data path logic circuits in addition to on-chip arrays to detect data corruption. Intermittent errors detected in execution units and data paths are recovered via instruction retry. A soft barrier clocking scheme allows amortization of the clock skew and jitter over multiple cycles and helps to achieve high clock frequency. Tunability of the clock timing makes timing closure easier. A relatively small amount of custom circuit design and the use of mostly static circuits contributes to achieve short development time.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2003.818146</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arrays ; Circuit design ; Circuits ; Clocks ; CMOS process ; Data paths ; Logic arrays ; Logic circuits ; Metallization ; Microprocessors ; Packaging ; Silicon on insulator technology ; System buses ; Time measurements ; Timing</subject><ispartof>IEEE journal of solid-state circuits, 2003-11, Vol.38 (11), p.1896-1905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-d6be33e80eef6629c1e6f251d9d2efdeff8ce4c35a452800ef9920ae35ae20323</citedby><cites>FETCH-LOGICAL-c447t-d6be33e80eef6629c1e6f251d9d2efdeff8ce4c35a452800ef9920ae35ae20323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1240969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1240969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ando, H.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>Inoue, A.</creatorcontrib><creatorcontrib>Sugiyama, I.</creatorcontrib><creatorcontrib>Asakawa, T.</creatorcontrib><creatorcontrib>Morita, K.</creatorcontrib><creatorcontrib>Muta, T.</creatorcontrib><creatorcontrib>Motokurumada, T.</creatorcontrib><creatorcontrib>Okada, S.</creatorcontrib><creatorcontrib>Yamashita, H.</creatorcontrib><creatorcontrib>Satsukawa, Y.</creatorcontrib><creatorcontrib>Konmoto, A.</creatorcontrib><creatorcontrib>Yamashita, R.</creatorcontrib><creatorcontrib>Sugiyama, H.</creatorcontrib><title>A 1.3-GHz fifth-generation SPARC64 microprocessor</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>A fifth-generation SPARC64 processor is fabricated in 130-nm partially depleted silicon-on-insulator CMOS with eight layers of Cu metallization. At V/sub dd/ = 1.2 V and T/sub a/ = 25/spl deg/C, it runs at 1.3 GHz and dissipates 34.7 W. The chip contains 191 M transistors with 19 M logic circuits in an area of 18.14 mm /spl times/ 15.99 mm and is covered with 5858 bumps, of which 269 are for I/O signals. It is mounted in a 1360-pin land-grid-array package. The 16-byte-wide system bus operates with a 260-MHz clock in single-data-rate or double-data-rate modes. This processor implements an error-detection mechanism for execution units and data path logic circuits in addition to on-chip arrays to detect data corruption. Intermittent errors detected in execution units and data paths are recovered via instruction retry. A soft barrier clocking scheme allows amortization of the clock skew and jitter over multiple cycles and helps to achieve high clock frequency. Tunability of the clock timing makes timing closure easier. A relatively small amount of custom circuit design and the use of mostly static circuits contributes to achieve short development time.</description><subject>Arrays</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Clocks</subject><subject>CMOS process</subject><subject>Data paths</subject><subject>Logic arrays</subject><subject>Logic circuits</subject><subject>Metallization</subject><subject>Microprocessors</subject><subject>Packaging</subject><subject>Silicon on insulator technology</subject><subject>System buses</subject><subject>Time measurements</subject><subject>Timing</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UFLwzAUB_AgCs7pXfAyPIiX1ry8NE2OY-imCIpT8BZq96Id2zqT7qCf3pQKggfdKST5vZfw_owdA08BuLm4mU5HqeAcUw0apNphPcgynUCOz7usxznoxMT7fXYQwjxupdTQYzAcQIrJePI5cJVr3pJXWpEvmqpeDab3w4eRkoNlVfp67euSQqj9IdtzxSLQ0ffaZ09Xl4-jSXJ7N74eDW-TUsq8SWbqhRBJcyKnlDAlkHIig5mZCXIzck6XJEvMCpkJzTk5E79XUDwgwVFgn511fePL7xsKjV1WoaTFolhRvQlWGG64BP4_1BoB83wLmGNuELeAoHOJOsLzPyGoHNBozNqep7_ovN74VZygNUKoDCEzEfEOxYGH4MnZta-Whf-wwG0bs21jtm3Mtos5lpx0JRUR_XAhuVEGvwAizJ-Y</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Ando, H.</creator><creator>Yoshida, Y.</creator><creator>Inoue, A.</creator><creator>Sugiyama, I.</creator><creator>Asakawa, T.</creator><creator>Morita, K.</creator><creator>Muta, T.</creator><creator>Motokurumada, T.</creator><creator>Okada, S.</creator><creator>Yamashita, H.</creator><creator>Satsukawa, Y.</creator><creator>Konmoto, A.</creator><creator>Yamashita, R.</creator><creator>Sugiyama, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>8BQ</scope><scope>JG9</scope><scope>7U5</scope><scope>7TB</scope></search><sort><creationdate>20031101</creationdate><title>A 1.3-GHz fifth-generation SPARC64 microprocessor</title><author>Ando, H. ; Yoshida, Y. ; Inoue, A. ; Sugiyama, I. ; Asakawa, T. ; Morita, K. ; Muta, T. ; Motokurumada, T. ; Okada, S. ; Yamashita, H. ; Satsukawa, Y. ; Konmoto, A. ; Yamashita, R. ; Sugiyama, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-d6be33e80eef6629c1e6f251d9d2efdeff8ce4c35a452800ef9920ae35ae20323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Arrays</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Clocks</topic><topic>CMOS process</topic><topic>Data paths</topic><topic>Logic arrays</topic><topic>Logic circuits</topic><topic>Metallization</topic><topic>Microprocessors</topic><topic>Packaging</topic><topic>Silicon on insulator technology</topic><topic>System buses</topic><topic>Time measurements</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ando, H.</creatorcontrib><creatorcontrib>Yoshida, Y.</creatorcontrib><creatorcontrib>Inoue, A.</creatorcontrib><creatorcontrib>Sugiyama, I.</creatorcontrib><creatorcontrib>Asakawa, T.</creatorcontrib><creatorcontrib>Morita, K.</creatorcontrib><creatorcontrib>Muta, T.</creatorcontrib><creatorcontrib>Motokurumada, T.</creatorcontrib><creatorcontrib>Okada, S.</creatorcontrib><creatorcontrib>Yamashita, H.</creatorcontrib><creatorcontrib>Satsukawa, Y.</creatorcontrib><creatorcontrib>Konmoto, A.</creatorcontrib><creatorcontrib>Yamashita, R.</creatorcontrib><creatorcontrib>Sugiyama, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ando, H.</au><au>Yoshida, Y.</au><au>Inoue, A.</au><au>Sugiyama, I.</au><au>Asakawa, T.</au><au>Morita, K.</au><au>Muta, T.</au><au>Motokurumada, T.</au><au>Okada, S.</au><au>Yamashita, H.</au><au>Satsukawa, Y.</au><au>Konmoto, A.</au><au>Yamashita, R.</au><au>Sugiyama, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1.3-GHz fifth-generation SPARC64 microprocessor</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2003-11-01</date><risdate>2003</risdate><volume>38</volume><issue>11</issue><spage>1896</spage><epage>1905</epage><pages>1896-1905</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>A fifth-generation SPARC64 processor is fabricated in 130-nm partially depleted silicon-on-insulator CMOS with eight layers of Cu metallization. At V/sub dd/ = 1.2 V and T/sub a/ = 25/spl deg/C, it runs at 1.3 GHz and dissipates 34.7 W. The chip contains 191 M transistors with 19 M logic circuits in an area of 18.14 mm /spl times/ 15.99 mm and is covered with 5858 bumps, of which 269 are for I/O signals. It is mounted in a 1360-pin land-grid-array package. The 16-byte-wide system bus operates with a 260-MHz clock in single-data-rate or double-data-rate modes. This processor implements an error-detection mechanism for execution units and data path logic circuits in addition to on-chip arrays to detect data corruption. Intermittent errors detected in execution units and data paths are recovered via instruction retry. A soft barrier clocking scheme allows amortization of the clock skew and jitter over multiple cycles and helps to achieve high clock frequency. Tunability of the clock timing makes timing closure easier. A relatively small amount of custom circuit design and the use of mostly static circuits contributes to achieve short development time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2003.818146</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2003-11, Vol.38 (11), p.1896-1905 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_miscellaneous_28737933 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays Circuit design Circuits Clocks CMOS process Data paths Logic arrays Logic circuits Metallization Microprocessors Packaging Silicon on insulator technology System buses Time measurements Timing |
title | A 1.3-GHz fifth-generation SPARC64 microprocessor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201.3-GHz%20fifth-generation%20SPARC64%20microprocessor&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Ando,%20H.&rft.date=2003-11-01&rft.volume=38&rft.issue=11&rft.spage=1896&rft.epage=1905&rft.pages=1896-1905&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2003.818146&rft_dat=%3Cproquest_RIE%3E28737933%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922653159&rft_id=info:pmid/&rft_ieee_id=1240969&rfr_iscdi=true |