Thermal stability of poly(trimethylene terephthalate)

The first-order thermal degradation rates of poly(trimethylene terephthalate) [PTT] at 240–280°C under non-oxidative conditions have been determined from the increase in allyl endgroups (1H NMR) which closely match the rates determined from the decrease in molecular weight (intrinsic viscosity). Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2005-10, Vol.46 (21), p.8937-8946
Hauptverfasser: Kelsey, Donald R., Kiibler, Kathy S., Tutunjian, Pierre N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8946
container_issue 21
container_start_page 8937
container_title Polymer (Guilford)
container_volume 46
creator Kelsey, Donald R.
Kiibler, Kathy S.
Tutunjian, Pierre N.
description The first-order thermal degradation rates of poly(trimethylene terephthalate) [PTT] at 240–280°C under non-oxidative conditions have been determined from the increase in allyl endgroups (1H NMR) which closely match the rates determined from the decrease in molecular weight (intrinsic viscosity). Consequently, the predominant thermal degradation mechanism of PTT is consistent with concerted, electrocyclic oxo retro-ene chain cleavage under conditions pertinent to viable polymerization processes and efficient downstream extrusion and spinning into fiber. Although catalysts, additives and other reaction variables can influence the thermo-oxidative stability of polyesters including PTT, these factors have been found to have little or no effect on PTT thermal degradation rates under non-oxidative environments. The thermal stability of poly(butylene terephthalate) [PBT] has also been determined from butenyl endgroups (NMR) and molecular weight (IV). The activation energies (Ea) for both PTT and PBT thermal chain cleavage are similar to the reported Eas for poly(ethylene terephthalate) [PET] degradation, which is further supported by semi-empirical molecular orbital calculations on model compounds. However, both PTT and PBT undergo molecular weight decrease faster than PET. The apparent slower chain cleavage of PET is attributed to the contribution of productive chain propagation reactions due to unstable vinyl endgroups which alters the equilibrium stoichiometry compared to the relatively stable endgroups of PTT and PBT.
doi_str_mv 10.1016/j.polymer.2005.07.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28736262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386105010086</els_id><sourcerecordid>28736262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-30c03b012880d86069da2faa8554e13109ba6caaaea3bcbbb1a5dcf086227ab23</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMoWKs_QehG0cWML0mTma5Eil9QcFPX4U3mDZOSdsYkFfrvndKCS129zXn3cg9j1xxyDlw_rPK-87s1hVwAqByKHLg6YSNeFjITYsZP2QhAikyWmp-zixhXACCUmI6YWrYU1ugnMWHlvEu7SddM9nl3Kbg1pXbnaUOTRIH6NrXoMdH9JTtr0Ee6Ot4x-3x5Xs7fssXH6_v8aZHZqS5SJsGCrICLsoS61KBnNYoGsVRqSlxymFWoLSISyspWVcVR1baBUgtRYCXkmN0ecvvQfW0pJrN20ZL3uKFuG40YFmqh_wPqaaEKOYDqANrQxRioMf0wE8POcDB7m2ZljjbN3qaBwgw2h7-bYwFGi74JuLEu_j4XnAtQfOAeDxwNWr7dkBKto42l2gWyydSd-6PpB8VNjeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28647573</pqid></control><display><type>article</type><title>Thermal stability of poly(trimethylene terephthalate)</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kelsey, Donald R. ; Kiibler, Kathy S. ; Tutunjian, Pierre N.</creator><creatorcontrib>Kelsey, Donald R. ; Kiibler, Kathy S. ; Tutunjian, Pierre N.</creatorcontrib><description>The first-order thermal degradation rates of poly(trimethylene terephthalate) [PTT] at 240–280°C under non-oxidative conditions have been determined from the increase in allyl endgroups (1H NMR) which closely match the rates determined from the decrease in molecular weight (intrinsic viscosity). Consequently, the predominant thermal degradation mechanism of PTT is consistent with concerted, electrocyclic oxo retro-ene chain cleavage under conditions pertinent to viable polymerization processes and efficient downstream extrusion and spinning into fiber. Although catalysts, additives and other reaction variables can influence the thermo-oxidative stability of polyesters including PTT, these factors have been found to have little or no effect on PTT thermal degradation rates under non-oxidative environments. The thermal stability of poly(butylene terephthalate) [PBT] has also been determined from butenyl endgroups (NMR) and molecular weight (IV). The activation energies (Ea) for both PTT and PBT thermal chain cleavage are similar to the reported Eas for poly(ethylene terephthalate) [PET] degradation, which is further supported by semi-empirical molecular orbital calculations on model compounds. However, both PTT and PBT undergo molecular weight decrease faster than PET. The apparent slower chain cleavage of PET is attributed to the contribution of productive chain propagation reactions due to unstable vinyl endgroups which alters the equilibrium stoichiometry compared to the relatively stable endgroups of PTT and PBT.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2005.07.015</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical reactions and properties ; Degradation ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Poly(trimethylene terephthalate) ; Polyester stability ; Thermal degradation rate</subject><ispartof>Polymer (Guilford), 2005-10, Vol.46 (21), p.8937-8946</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-30c03b012880d86069da2faa8554e13109ba6caaaea3bcbbb1a5dcf086227ab23</citedby><cites>FETCH-LOGICAL-c467t-30c03b012880d86069da2faa8554e13109ba6caaaea3bcbbb1a5dcf086227ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2005.07.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17112051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelsey, Donald R.</creatorcontrib><creatorcontrib>Kiibler, Kathy S.</creatorcontrib><creatorcontrib>Tutunjian, Pierre N.</creatorcontrib><title>Thermal stability of poly(trimethylene terephthalate)</title><title>Polymer (Guilford)</title><description>The first-order thermal degradation rates of poly(trimethylene terephthalate) [PTT] at 240–280°C under non-oxidative conditions have been determined from the increase in allyl endgroups (1H NMR) which closely match the rates determined from the decrease in molecular weight (intrinsic viscosity). Consequently, the predominant thermal degradation mechanism of PTT is consistent with concerted, electrocyclic oxo retro-ene chain cleavage under conditions pertinent to viable polymerization processes and efficient downstream extrusion and spinning into fiber. Although catalysts, additives and other reaction variables can influence the thermo-oxidative stability of polyesters including PTT, these factors have been found to have little or no effect on PTT thermal degradation rates under non-oxidative environments. The thermal stability of poly(butylene terephthalate) [PBT] has also been determined from butenyl endgroups (NMR) and molecular weight (IV). The activation energies (Ea) for both PTT and PBT thermal chain cleavage are similar to the reported Eas for poly(ethylene terephthalate) [PET] degradation, which is further supported by semi-empirical molecular orbital calculations on model compounds. However, both PTT and PBT undergo molecular weight decrease faster than PET. The apparent slower chain cleavage of PET is attributed to the contribution of productive chain propagation reactions due to unstable vinyl endgroups which alters the equilibrium stoichiometry compared to the relatively stable endgroups of PTT and PBT.</description><subject>Applied sciences</subject><subject>Chemical reactions and properties</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Poly(trimethylene terephthalate)</subject><subject>Polyester stability</subject><subject>Thermal degradation rate</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEURYMoWKs_QehG0cWML0mTma5Eil9QcFPX4U3mDZOSdsYkFfrvndKCS129zXn3cg9j1xxyDlw_rPK-87s1hVwAqByKHLg6YSNeFjITYsZP2QhAikyWmp-zixhXACCUmI6YWrYU1ugnMWHlvEu7SddM9nl3Kbg1pXbnaUOTRIH6NrXoMdH9JTtr0Ee6Ot4x-3x5Xs7fssXH6_v8aZHZqS5SJsGCrICLsoS61KBnNYoGsVRqSlxymFWoLSISyspWVcVR1baBUgtRYCXkmN0ecvvQfW0pJrN20ZL3uKFuG40YFmqh_wPqaaEKOYDqANrQxRioMf0wE8POcDB7m2ZljjbN3qaBwgw2h7-bYwFGi74JuLEu_j4XnAtQfOAeDxwNWr7dkBKto42l2gWyydSd-6PpB8VNjeI</recordid><startdate>20051007</startdate><enddate>20051007</enddate><creator>Kelsey, Donald R.</creator><creator>Kiibler, Kathy S.</creator><creator>Tutunjian, Pierre N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051007</creationdate><title>Thermal stability of poly(trimethylene terephthalate)</title><author>Kelsey, Donald R. ; Kiibler, Kathy S. ; Tutunjian, Pierre N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-30c03b012880d86069da2faa8554e13109ba6caaaea3bcbbb1a5dcf086227ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical reactions and properties</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Poly(trimethylene terephthalate)</topic><topic>Polyester stability</topic><topic>Thermal degradation rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelsey, Donald R.</creatorcontrib><creatorcontrib>Kiibler, Kathy S.</creatorcontrib><creatorcontrib>Tutunjian, Pierre N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelsey, Donald R.</au><au>Kiibler, Kathy S.</au><au>Tutunjian, Pierre N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of poly(trimethylene terephthalate)</atitle><jtitle>Polymer (Guilford)</jtitle><date>2005-10-07</date><risdate>2005</risdate><volume>46</volume><issue>21</issue><spage>8937</spage><epage>8946</epage><pages>8937-8946</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>The first-order thermal degradation rates of poly(trimethylene terephthalate) [PTT] at 240–280°C under non-oxidative conditions have been determined from the increase in allyl endgroups (1H NMR) which closely match the rates determined from the decrease in molecular weight (intrinsic viscosity). Consequently, the predominant thermal degradation mechanism of PTT is consistent with concerted, electrocyclic oxo retro-ene chain cleavage under conditions pertinent to viable polymerization processes and efficient downstream extrusion and spinning into fiber. Although catalysts, additives and other reaction variables can influence the thermo-oxidative stability of polyesters including PTT, these factors have been found to have little or no effect on PTT thermal degradation rates under non-oxidative environments. The thermal stability of poly(butylene terephthalate) [PBT] has also been determined from butenyl endgroups (NMR) and molecular weight (IV). The activation energies (Ea) for both PTT and PBT thermal chain cleavage are similar to the reported Eas for poly(ethylene terephthalate) [PET] degradation, which is further supported by semi-empirical molecular orbital calculations on model compounds. However, both PTT and PBT undergo molecular weight decrease faster than PET. The apparent slower chain cleavage of PET is attributed to the contribution of productive chain propagation reactions due to unstable vinyl endgroups which alters the equilibrium stoichiometry compared to the relatively stable endgroups of PTT and PBT.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2005.07.015</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2005-10, Vol.46 (21), p.8937-8946
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_28736262
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Chemical reactions and properties
Degradation
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Poly(trimethylene terephthalate)
Polyester stability
Thermal degradation rate
title Thermal stability of poly(trimethylene terephthalate)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20poly(trimethylene%20terephthalate)&rft.jtitle=Polymer%20(Guilford)&rft.au=Kelsey,%20Donald%20R.&rft.date=2005-10-07&rft.volume=46&rft.issue=21&rft.spage=8937&rft.epage=8946&rft.pages=8937-8946&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2005.07.015&rft_dat=%3Cproquest_cross%3E28736262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28647573&rft_id=info:pmid/&rft_els_id=S0032386105010086&rfr_iscdi=true