Complex impedance analysis of layered perovskite structure electroceramics-NaDyTiO4

NaDyTiO4, having layered perovskite structure, was prepared by a standard high-temperature solid-state reaction technique. XRD studies confirmed material formation under reported conditions along with the presence of impurity (Na2Dy2Ti3O10) as the minor phase. Complex impedance spectroscopy (CIS) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2005-10, Vol.40 (20), p.5419-5425
Hauptverfasser: PRADHAN, D. K, SAMANTARAY, B. K, CHOUDHARY, R. N. P, THAKUR, A. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5425
container_issue 20
container_start_page 5419
container_title Journal of materials science
container_volume 40
creator PRADHAN, D. K
SAMANTARAY, B. K
CHOUDHARY, R. N. P
THAKUR, A. K
description NaDyTiO4, having layered perovskite structure, was prepared by a standard high-temperature solid-state reaction technique. XRD studies confirmed material formation under reported conditions along with the presence of impurity (Na2Dy2Ti3O10) as the minor phase. Complex impedance spectroscopy (CIS) analysis was carried out to investigate its microstructure and electrical properties as a function of frequency and temperature. CIS analysis indicated that the electrical behaviour of the material sample showed negative temperature coefficient of resistance (NTCR) typical of a semiconductor. Impedance studies also indicated the presence of temperature dependent relaxation process in the material with a spread of relaxation time. The dc conductivity was about 10 exp(-9) S/cm at room temperature. It increased as a function of temperature with a maximum of about 10 exp(-5) S/cm at 550 C. The conductivity variation shows a cross-over from Mott-type hopping phenomena at lower temperatures to a thermally activated Arrhenius type behaviour at high temperatures.
doi_str_mv 10.1007/s10853-005-2824-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28733025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28650997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-54ba315793b9c62828d33149e4e2f03ca82239f8818be632cffb65a5f247b80c3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouK7-AG8F0Vs0mSRtepT1Exb34HoOaXYCXdttTVpx_71ZVhA8eZrLM--8zEPIOWfXnLHiJnKmlaCMKQoaJNUHZMJVIajUTBySCWMAFGTOj8lJjGuWwAL4hLzOurZv8Cur2x5XduMwsxvbbGMds85njd1iwFXWY-g-43s9YBaHMLphDJhhg24IncNg29pF-mLvtst6IU_JkbdNxLOfOSVvD_fL2ROdLx6fZ7dz6kSZD1TJyorUsRRV6fLUWq-E4LJEieCZcFYDiNJrzXWFuQDnfZUrqzzIotLMiSm52uf2ofsYMQ6mraPDprEb7MZoQBdCMFD_AHPFyrL4DwhC8x148Qdcd2NIj0sMqDIvVJ5uTwnfUy50MQb0pg91a8PWcGZ22sxem0k2zE6b0Wnn8ifZRmcbH5KTOv4uFqBAAhffM9aWng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259675673</pqid></control><display><type>article</type><title>Complex impedance analysis of layered perovskite structure electroceramics-NaDyTiO4</title><source>SpringerLink (Online service)</source><creator>PRADHAN, D. K ; SAMANTARAY, B. K ; CHOUDHARY, R. N. P ; THAKUR, A. K</creator><creatorcontrib>PRADHAN, D. K ; SAMANTARAY, B. K ; CHOUDHARY, R. N. P ; THAKUR, A. K</creatorcontrib><description>NaDyTiO4, having layered perovskite structure, was prepared by a standard high-temperature solid-state reaction technique. XRD studies confirmed material formation under reported conditions along with the presence of impurity (Na2Dy2Ti3O10) as the minor phase. Complex impedance spectroscopy (CIS) analysis was carried out to investigate its microstructure and electrical properties as a function of frequency and temperature. CIS analysis indicated that the electrical behaviour of the material sample showed negative temperature coefficient of resistance (NTCR) typical of a semiconductor. Impedance studies also indicated the presence of temperature dependent relaxation process in the material with a spread of relaxation time. The dc conductivity was about 10 exp(-9) S/cm at room temperature. It increased as a function of temperature with a maximum of about 10 exp(-5) S/cm at 550 C. The conductivity variation shows a cross-over from Mott-type hopping phenomena at lower temperatures to a thermally activated Arrhenius type behaviour at high temperatures.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-005-2824-8</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramics ; Chemical industry and chemicals ; Electrical properties ; Electrical resistivity ; Electrotechnical and electronic ceramics ; Exact sciences and technology ; High temperature ; Materials science ; Perovskite structure ; Perovskites ; Relaxation time ; Technical ceramics ; Temperature ; Temperature dependence ; X-ray diffraction</subject><ispartof>Journal of materials science, 2005-10, Vol.40 (20), p.5419-5425</ispartof><rights>2006 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2005). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-54ba315793b9c62828d33149e4e2f03ca82239f8818be632cffb65a5f247b80c3</citedby><cites>FETCH-LOGICAL-c396t-54ba315793b9c62828d33149e4e2f03ca82239f8818be632cffb65a5f247b80c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17252421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PRADHAN, D. K</creatorcontrib><creatorcontrib>SAMANTARAY, B. K</creatorcontrib><creatorcontrib>CHOUDHARY, R. N. P</creatorcontrib><creatorcontrib>THAKUR, A. K</creatorcontrib><title>Complex impedance analysis of layered perovskite structure electroceramics-NaDyTiO4</title><title>Journal of materials science</title><description>NaDyTiO4, having layered perovskite structure, was prepared by a standard high-temperature solid-state reaction technique. XRD studies confirmed material formation under reported conditions along with the presence of impurity (Na2Dy2Ti3O10) as the minor phase. Complex impedance spectroscopy (CIS) analysis was carried out to investigate its microstructure and electrical properties as a function of frequency and temperature. CIS analysis indicated that the electrical behaviour of the material sample showed negative temperature coefficient of resistance (NTCR) typical of a semiconductor. Impedance studies also indicated the presence of temperature dependent relaxation process in the material with a spread of relaxation time. The dc conductivity was about 10 exp(-9) S/cm at room temperature. It increased as a function of temperature with a maximum of about 10 exp(-5) S/cm at 550 C. The conductivity variation shows a cross-over from Mott-type hopping phenomena at lower temperatures to a thermally activated Arrhenius type behaviour at high temperatures.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramics</subject><subject>Chemical industry and chemicals</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electrotechnical and electronic ceramics</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Materials science</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Relaxation time</subject><subject>Technical ceramics</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>X-ray diffraction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1LxDAQhoMouK7-AG8F0Vs0mSRtepT1Exb34HoOaXYCXdttTVpx_71ZVhA8eZrLM--8zEPIOWfXnLHiJnKmlaCMKQoaJNUHZMJVIajUTBySCWMAFGTOj8lJjGuWwAL4hLzOurZv8Cur2x5XduMwsxvbbGMds85njd1iwFXWY-g-43s9YBaHMLphDJhhg24IncNg29pF-mLvtst6IU_JkbdNxLOfOSVvD_fL2ROdLx6fZ7dz6kSZD1TJyorUsRRV6fLUWq-E4LJEieCZcFYDiNJrzXWFuQDnfZUrqzzIotLMiSm52uf2ofsYMQ6mraPDprEb7MZoQBdCMFD_AHPFyrL4DwhC8x148Qdcd2NIj0sMqDIvVJ5uTwnfUy50MQb0pg91a8PWcGZ22sxem0k2zE6b0Wnn8ifZRmcbH5KTOv4uFqBAAhffM9aWng</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>PRADHAN, D. K</creator><creator>SAMANTARAY, B. K</creator><creator>CHOUDHARY, R. N. P</creator><creator>THAKUR, A. K</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20051001</creationdate><title>Complex impedance analysis of layered perovskite structure electroceramics-NaDyTiO4</title><author>PRADHAN, D. K ; SAMANTARAY, B. K ; CHOUDHARY, R. N. P ; THAKUR, A. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-54ba315793b9c62828d33149e4e2f03ca82239f8818be632cffb65a5f247b80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramics</topic><topic>Chemical industry and chemicals</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electrotechnical and electronic ceramics</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Materials science</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Relaxation time</topic><topic>Technical ceramics</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PRADHAN, D. K</creatorcontrib><creatorcontrib>SAMANTARAY, B. K</creatorcontrib><creatorcontrib>CHOUDHARY, R. N. P</creatorcontrib><creatorcontrib>THAKUR, A. K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PRADHAN, D. K</au><au>SAMANTARAY, B. K</au><au>CHOUDHARY, R. N. P</au><au>THAKUR, A. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex impedance analysis of layered perovskite structure electroceramics-NaDyTiO4</atitle><jtitle>Journal of materials science</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>40</volume><issue>20</issue><spage>5419</spage><epage>5425</epage><pages>5419-5425</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>NaDyTiO4, having layered perovskite structure, was prepared by a standard high-temperature solid-state reaction technique. XRD studies confirmed material formation under reported conditions along with the presence of impurity (Na2Dy2Ti3O10) as the minor phase. Complex impedance spectroscopy (CIS) analysis was carried out to investigate its microstructure and electrical properties as a function of frequency and temperature. CIS analysis indicated that the electrical behaviour of the material sample showed negative temperature coefficient of resistance (NTCR) typical of a semiconductor. Impedance studies also indicated the presence of temperature dependent relaxation process in the material with a spread of relaxation time. The dc conductivity was about 10 exp(-9) S/cm at room temperature. It increased as a function of temperature with a maximum of about 10 exp(-5) S/cm at 550 C. The conductivity variation shows a cross-over from Mott-type hopping phenomena at lower temperatures to a thermally activated Arrhenius type behaviour at high temperatures.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-005-2824-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2005-10, Vol.40 (20), p.5419-5425
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_28733025
source SpringerLink (Online service)
subjects Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Ceramics
Chemical industry and chemicals
Electrical properties
Electrical resistivity
Electrotechnical and electronic ceramics
Exact sciences and technology
High temperature
Materials science
Perovskite structure
Perovskites
Relaxation time
Technical ceramics
Temperature
Temperature dependence
X-ray diffraction
title Complex impedance analysis of layered perovskite structure electroceramics-NaDyTiO4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20impedance%20analysis%20of%20layered%20perovskite%20structure%20electroceramics-NaDyTiO4&rft.jtitle=Journal%20of%20materials%20science&rft.au=PRADHAN,%20D.%20K&rft.date=2005-10-01&rft.volume=40&rft.issue=20&rft.spage=5419&rft.epage=5425&rft.pages=5419-5425&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-005-2824-8&rft_dat=%3Cproquest_cross%3E28650997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259675673&rft_id=info:pmid/&rfr_iscdi=true