Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor
[Display omitted] •LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedsto...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2023-12, Vol.389, p.129818-129818, Article 129818 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129818 |
---|---|
container_issue | |
container_start_page | 129818 |
container_title | Bioresource technology |
container_volume | 389 |
creator | la Rosa A., Macías-de López-Rosales, L. Cerón-García, M.C. Molina-Miras, A. Soriano-Jerez, Y. Sánchez-Mirón, A. Seoane, S. García-Camacho, F. |
description | [Display omitted]
•LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies.
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock. |
doi_str_mv | 10.1016/j.biortech.2023.129818 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2873252987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423012464</els_id><sourcerecordid>2873252987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a1333f626de5138a023f2e3dd4190cddc87fcccfbdb33ce0ac93e3bc8da00d8e3</originalsourceid><addsrcrecordid>eNqFkc1uFDEQhEeISFkSXiHykYsX_2T-bkQrCJEi5QJny9Pu2fHiGS9uT6R9Hl4UrxbOOdWlulpVX1XdSbGVQjafD9vBx5QRpq0SSm-l6jvZvas2sms1V33bvK82om8E72p1f119IDoIIbRs1ab680CERDMumcWR5QnZbJNfinhI0Ya9ZbspnSjClOK8Br9YlmK2wROzxMprC9m_IhsRHeUIvxisIa8JHfMLswtDSyeeI3d4DPHEgt9PmePsc_bLnjsfHfLBUvHndViDTew4xRzPpbBkx3RbXY02EH78pzfVz29ff-y-8-eXx6fdwzMHrerMrdRaj41qHNZSd7ZsMSrUzt3LXoBz0LUjAIyDG7QGFBZ6jXqAzlkhXIf6pvp0yT2m-HtFymb2BBiCXTCuZLSsteyUavs3rapMr-oCoi3W5mItcxIlHM0x-bLxyUhhzgDNwfwHaM4AzQVgOfxyOcTS-dVjMgQeF0DnE0I2Lvq3Iv4CyGettg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873252987</pqid></control><display><type>article</type><title>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>la Rosa A., Macías-de ; López-Rosales, L. ; Cerón-García, M.C. ; Molina-Miras, A. ; Soriano-Jerez, Y. ; Sánchez-Mirón, A. ; Seoane, S. ; García-Camacho, F.</creator><creatorcontrib>la Rosa A., Macías-de ; López-Rosales, L. ; Cerón-García, M.C. ; Molina-Miras, A. ; Soriano-Jerez, Y. ; Sánchez-Mirón, A. ; Seoane, S. ; García-Camacho, F.</creatorcontrib><description>[Display omitted]
•LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies.
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.129818</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>biomass production ; Biorefinery ; biorefining ; Carotenoid ; carotenoids ; feedstocks ; Fucoxanthin ; Haptophyta ; Haptophyte ; microalgae ; phosphorus ; photobioreactors ; Shear stress</subject><ispartof>Bioresource technology, 2023-12, Vol.389, p.129818-129818, Article 129818</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-a1333f626de5138a023f2e3dd4190cddc87fcccfbdb33ce0ac93e3bc8da00d8e3</cites><orcidid>0000-0001-5881-6086 ; 0000-0003-0800-1123 ; 0000-0001-6168-3632 ; 0000-0002-2030-6707 ; 0000-0001-5119-8035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>la Rosa A., Macías-de</creatorcontrib><creatorcontrib>López-Rosales, L.</creatorcontrib><creatorcontrib>Cerón-García, M.C.</creatorcontrib><creatorcontrib>Molina-Miras, A.</creatorcontrib><creatorcontrib>Soriano-Jerez, Y.</creatorcontrib><creatorcontrib>Sánchez-Mirón, A.</creatorcontrib><creatorcontrib>Seoane, S.</creatorcontrib><creatorcontrib>García-Camacho, F.</creatorcontrib><title>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</title><title>Bioresource technology</title><description>[Display omitted]
•LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies.
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.</description><subject>biomass production</subject><subject>Biorefinery</subject><subject>biorefining</subject><subject>Carotenoid</subject><subject>carotenoids</subject><subject>feedstocks</subject><subject>Fucoxanthin</subject><subject>Haptophyta</subject><subject>Haptophyte</subject><subject>microalgae</subject><subject>phosphorus</subject><subject>photobioreactors</subject><subject>Shear stress</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uFDEQhEeISFkSXiHykYsX_2T-bkQrCJEi5QJny9Pu2fHiGS9uT6R9Hl4UrxbOOdWlulpVX1XdSbGVQjafD9vBx5QRpq0SSm-l6jvZvas2sms1V33bvK82om8E72p1f119IDoIIbRs1ab680CERDMumcWR5QnZbJNfinhI0Ya9ZbspnSjClOK8Br9YlmK2wROzxMprC9m_IhsRHeUIvxisIa8JHfMLswtDSyeeI3d4DPHEgt9PmePsc_bLnjsfHfLBUvHndViDTew4xRzPpbBkx3RbXY02EH78pzfVz29ff-y-8-eXx6fdwzMHrerMrdRaj41qHNZSd7ZsMSrUzt3LXoBz0LUjAIyDG7QGFBZ6jXqAzlkhXIf6pvp0yT2m-HtFymb2BBiCXTCuZLSsteyUavs3rapMr-oCoi3W5mItcxIlHM0x-bLxyUhhzgDNwfwHaM4AzQVgOfxyOcTS-dVjMgQeF0DnE0I2Lvq3Iv4CyGettg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>la Rosa A., Macías-de</creator><creator>López-Rosales, L.</creator><creator>Cerón-García, M.C.</creator><creator>Molina-Miras, A.</creator><creator>Soriano-Jerez, Y.</creator><creator>Sánchez-Mirón, A.</creator><creator>Seoane, S.</creator><creator>García-Camacho, F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5881-6086</orcidid><orcidid>https://orcid.org/0000-0003-0800-1123</orcidid><orcidid>https://orcid.org/0000-0001-6168-3632</orcidid><orcidid>https://orcid.org/0000-0002-2030-6707</orcidid><orcidid>https://orcid.org/0000-0001-5119-8035</orcidid></search><sort><creationdate>20231201</creationdate><title>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</title><author>la Rosa A., Macías-de ; López-Rosales, L. ; Cerón-García, M.C. ; Molina-Miras, A. ; Soriano-Jerez, Y. ; Sánchez-Mirón, A. ; Seoane, S. ; García-Camacho, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a1333f626de5138a023f2e3dd4190cddc87fcccfbdb33ce0ac93e3bc8da00d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>biomass production</topic><topic>Biorefinery</topic><topic>biorefining</topic><topic>Carotenoid</topic><topic>carotenoids</topic><topic>feedstocks</topic><topic>Fucoxanthin</topic><topic>Haptophyta</topic><topic>Haptophyte</topic><topic>microalgae</topic><topic>phosphorus</topic><topic>photobioreactors</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>la Rosa A., Macías-de</creatorcontrib><creatorcontrib>López-Rosales, L.</creatorcontrib><creatorcontrib>Cerón-García, M.C.</creatorcontrib><creatorcontrib>Molina-Miras, A.</creatorcontrib><creatorcontrib>Soriano-Jerez, Y.</creatorcontrib><creatorcontrib>Sánchez-Mirón, A.</creatorcontrib><creatorcontrib>Seoane, S.</creatorcontrib><creatorcontrib>García-Camacho, F.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>la Rosa A., Macías-de</au><au>López-Rosales, L.</au><au>Cerón-García, M.C.</au><au>Molina-Miras, A.</au><au>Soriano-Jerez, Y.</au><au>Sánchez-Mirón, A.</au><au>Seoane, S.</au><au>García-Camacho, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</atitle><jtitle>Bioresource technology</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>389</volume><spage>129818</spage><epage>129818</epage><pages>129818-129818</pages><artnum>129818</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies.
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.biortech.2023.129818</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5881-6086</orcidid><orcidid>https://orcid.org/0000-0003-0800-1123</orcidid><orcidid>https://orcid.org/0000-0001-6168-3632</orcidid><orcidid>https://orcid.org/0000-0002-2030-6707</orcidid><orcidid>https://orcid.org/0000-0001-5119-8035</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2023-12, Vol.389, p.129818-129818, Article 129818 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2873252987 |
source | Elsevier ScienceDirect Journals Complete |
subjects | biomass production Biorefinery biorefining Carotenoid carotenoids feedstocks Fucoxanthin Haptophyta Haptophyte microalgae phosphorus photobioreactors Shear stress |
title | Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20marine%20microalga%20Chrysochromulina%20rotalis%20as%20bioactive%20feedstock%20cultured%20in%20an%20easy-to-deploy%20light-emitting-diode-based%20tubular%20photobioreactor&rft.jtitle=Bioresource%20technology&rft.au=la%20Rosa%20A.,%20Mac%C3%ADas-de&rft.date=2023-12-01&rft.volume=389&rft.spage=129818&rft.epage=129818&rft.pages=129818-129818&rft.artnum=129818&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.129818&rft_dat=%3Cproquest_cross%3E2873252987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873252987&rft_id=info:pmid/&rft_els_id=S0960852423012464&rfr_iscdi=true |