Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor

[Display omitted] •LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedsto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2023-12, Vol.389, p.129818-129818, Article 129818
Hauptverfasser: la Rosa A., Macías-de, López-Rosales, L., Cerón-García, M.C., Molina-Miras, A., Soriano-Jerez, Y., Sánchez-Mirón, A., Seoane, S., García-Camacho, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129818
container_issue
container_start_page 129818
container_title Bioresource technology
container_volume 389
creator la Rosa A., Macías-de
López-Rosales, L.
Cerón-García, M.C.
Molina-Miras, A.
Soriano-Jerez, Y.
Sánchez-Mirón, A.
Seoane, S.
García-Camacho, F.
description [Display omitted] •LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies. Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.
doi_str_mv 10.1016/j.biortech.2023.129818
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2873252987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423012464</els_id><sourcerecordid>2873252987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a1333f626de5138a023f2e3dd4190cddc87fcccfbdb33ce0ac93e3bc8da00d8e3</originalsourceid><addsrcrecordid>eNqFkc1uFDEQhEeISFkSXiHykYsX_2T-bkQrCJEi5QJny9Pu2fHiGS9uT6R9Hl4UrxbOOdWlulpVX1XdSbGVQjafD9vBx5QRpq0SSm-l6jvZvas2sms1V33bvK82om8E72p1f119IDoIIbRs1ab680CERDMumcWR5QnZbJNfinhI0Ya9ZbspnSjClOK8Br9YlmK2wROzxMprC9m_IhsRHeUIvxisIa8JHfMLswtDSyeeI3d4DPHEgt9PmePsc_bLnjsfHfLBUvHndViDTew4xRzPpbBkx3RbXY02EH78pzfVz29ff-y-8-eXx6fdwzMHrerMrdRaj41qHNZSd7ZsMSrUzt3LXoBz0LUjAIyDG7QGFBZ6jXqAzlkhXIf6pvp0yT2m-HtFymb2BBiCXTCuZLSsteyUavs3rapMr-oCoi3W5mItcxIlHM0x-bLxyUhhzgDNwfwHaM4AzQVgOfxyOcTS-dVjMgQeF0DnE0I2Lvq3Iv4CyGettg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873252987</pqid></control><display><type>article</type><title>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>la Rosa A., Macías-de ; López-Rosales, L. ; Cerón-García, M.C. ; Molina-Miras, A. ; Soriano-Jerez, Y. ; Sánchez-Mirón, A. ; Seoane, S. ; García-Camacho, F.</creator><creatorcontrib>la Rosa A., Macías-de ; López-Rosales, L. ; Cerón-García, M.C. ; Molina-Miras, A. ; Soriano-Jerez, Y. ; Sánchez-Mirón, A. ; Seoane, S. ; García-Camacho, F.</creatorcontrib><description>[Display omitted] •LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies. Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.129818</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>biomass production ; Biorefinery ; biorefining ; Carotenoid ; carotenoids ; feedstocks ; Fucoxanthin ; Haptophyta ; Haptophyte ; microalgae ; phosphorus ; photobioreactors ; Shear stress</subject><ispartof>Bioresource technology, 2023-12, Vol.389, p.129818-129818, Article 129818</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-a1333f626de5138a023f2e3dd4190cddc87fcccfbdb33ce0ac93e3bc8da00d8e3</cites><orcidid>0000-0001-5881-6086 ; 0000-0003-0800-1123 ; 0000-0001-6168-3632 ; 0000-0002-2030-6707 ; 0000-0001-5119-8035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>la Rosa A., Macías-de</creatorcontrib><creatorcontrib>López-Rosales, L.</creatorcontrib><creatorcontrib>Cerón-García, M.C.</creatorcontrib><creatorcontrib>Molina-Miras, A.</creatorcontrib><creatorcontrib>Soriano-Jerez, Y.</creatorcontrib><creatorcontrib>Sánchez-Mirón, A.</creatorcontrib><creatorcontrib>Seoane, S.</creatorcontrib><creatorcontrib>García-Camacho, F.</creatorcontrib><title>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</title><title>Bioresource technology</title><description>[Display omitted] •LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies. Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.</description><subject>biomass production</subject><subject>Biorefinery</subject><subject>biorefining</subject><subject>Carotenoid</subject><subject>carotenoids</subject><subject>feedstocks</subject><subject>Fucoxanthin</subject><subject>Haptophyta</subject><subject>Haptophyte</subject><subject>microalgae</subject><subject>phosphorus</subject><subject>photobioreactors</subject><subject>Shear stress</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uFDEQhEeISFkSXiHykYsX_2T-bkQrCJEi5QJny9Pu2fHiGS9uT6R9Hl4UrxbOOdWlulpVX1XdSbGVQjafD9vBx5QRpq0SSm-l6jvZvas2sms1V33bvK82om8E72p1f119IDoIIbRs1ab680CERDMumcWR5QnZbJNfinhI0Ya9ZbspnSjClOK8Br9YlmK2wROzxMprC9m_IhsRHeUIvxisIa8JHfMLswtDSyeeI3d4DPHEgt9PmePsc_bLnjsfHfLBUvHndViDTew4xRzPpbBkx3RbXY02EH78pzfVz29ff-y-8-eXx6fdwzMHrerMrdRaj41qHNZSd7ZsMSrUzt3LXoBz0LUjAIyDG7QGFBZ6jXqAzlkhXIf6pvp0yT2m-HtFymb2BBiCXTCuZLSsteyUavs3rapMr-oCoi3W5mItcxIlHM0x-bLxyUhhzgDNwfwHaM4AzQVgOfxyOcTS-dVjMgQeF0DnE0I2Lvq3Iv4CyGettg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>la Rosa A., Macías-de</creator><creator>López-Rosales, L.</creator><creator>Cerón-García, M.C.</creator><creator>Molina-Miras, A.</creator><creator>Soriano-Jerez, Y.</creator><creator>Sánchez-Mirón, A.</creator><creator>Seoane, S.</creator><creator>García-Camacho, F.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5881-6086</orcidid><orcidid>https://orcid.org/0000-0003-0800-1123</orcidid><orcidid>https://orcid.org/0000-0001-6168-3632</orcidid><orcidid>https://orcid.org/0000-0002-2030-6707</orcidid><orcidid>https://orcid.org/0000-0001-5119-8035</orcidid></search><sort><creationdate>20231201</creationdate><title>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</title><author>la Rosa A., Macías-de ; López-Rosales, L. ; Cerón-García, M.C. ; Molina-Miras, A. ; Soriano-Jerez, Y. ; Sánchez-Mirón, A. ; Seoane, S. ; García-Camacho, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a1333f626de5138a023f2e3dd4190cddc87fcccfbdb33ce0ac93e3bc8da00d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>biomass production</topic><topic>Biorefinery</topic><topic>biorefining</topic><topic>Carotenoid</topic><topic>carotenoids</topic><topic>feedstocks</topic><topic>Fucoxanthin</topic><topic>Haptophyta</topic><topic>Haptophyte</topic><topic>microalgae</topic><topic>phosphorus</topic><topic>photobioreactors</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>la Rosa A., Macías-de</creatorcontrib><creatorcontrib>López-Rosales, L.</creatorcontrib><creatorcontrib>Cerón-García, M.C.</creatorcontrib><creatorcontrib>Molina-Miras, A.</creatorcontrib><creatorcontrib>Soriano-Jerez, Y.</creatorcontrib><creatorcontrib>Sánchez-Mirón, A.</creatorcontrib><creatorcontrib>Seoane, S.</creatorcontrib><creatorcontrib>García-Camacho, F.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>la Rosa A., Macías-de</au><au>López-Rosales, L.</au><au>Cerón-García, M.C.</au><au>Molina-Miras, A.</au><au>Soriano-Jerez, Y.</au><au>Sánchez-Mirón, A.</au><au>Seoane, S.</au><au>García-Camacho, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor</atitle><jtitle>Bioresource technology</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>389</volume><spage>129818</spage><epage>129818</epage><pages>129818-129818</pages><artnum>129818</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •LED cultivation reveals bioactivity potential of Chrysochromulina rotalis.•Phosphorus adaptation optimizes yield without compromising biomass.•Tubular PBR design enables production of shear-sensitive biomass for biorefinery.•C. rotalis shows promise as a valuable bioactive feedstock for biorefinery studies. Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.biortech.2023.129818</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5881-6086</orcidid><orcidid>https://orcid.org/0000-0003-0800-1123</orcidid><orcidid>https://orcid.org/0000-0001-6168-3632</orcidid><orcidid>https://orcid.org/0000-0002-2030-6707</orcidid><orcidid>https://orcid.org/0000-0001-5119-8035</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2023-12, Vol.389, p.129818-129818, Article 129818
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2873252987
source Elsevier ScienceDirect Journals Complete
subjects biomass production
Biorefinery
biorefining
Carotenoid
carotenoids
feedstocks
Fucoxanthin
Haptophyta
Haptophyte
microalgae
phosphorus
photobioreactors
Shear stress
title Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20marine%20microalga%20Chrysochromulina%20rotalis%20as%20bioactive%20feedstock%20cultured%20in%20an%20easy-to-deploy%20light-emitting-diode-based%20tubular%20photobioreactor&rft.jtitle=Bioresource%20technology&rft.au=la%20Rosa%20A.,%20Mac%C3%ADas-de&rft.date=2023-12-01&rft.volume=389&rft.spage=129818&rft.epage=129818&rft.pages=129818-129818&rft.artnum=129818&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.129818&rft_dat=%3Cproquest_cross%3E2873252987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873252987&rft_id=info:pmid/&rft_els_id=S0960852423012464&rfr_iscdi=true