Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings
Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2023-12, Vol.241 (11-12), p.2669-2682 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2682 |
---|---|
container_issue | 11-12 |
container_start_page | 2669 |
container_title | Experimental brain research |
container_volume | 241 |
creator | Lonner, T. L. Allred, A. R. Bonarrigo, L. Gopinath, A. Smith, K. Kravets, V. Groen, E. L. Oman, C. DiZio, P. Lawson, B. D. Clark, T. K. |
description | Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop non-pharmaceutical countermeasures to EMS. We assessed the efficacy of a technological countermeasure providing external visual cues following splashdown, where otherwise only nauseogenic internal cabin visual references are available. Our countermeasure provided motion-congruent visual cues of an Earth-fixed scene in virtual reality, which was compared to a control condition with a head-fixed fixation point in virtual reality in a between-subject design with 15 subjects in each group. We tested the countermeasure’s effectiveness at mitigating motion sickness symptoms at the end of a ground-based reentry analog: approximately 1 h of 2Gx centrifugation followed by up to 1 h of wave-like motion. Secondarily, we explored differences in vestibular-mediated balance performance between the two conditions. While Motion Sickness Questionnaire outcomes did not differ detectably between groups, we found significantly better survival rates (with dropout dictated by reporting moderate nausea consecutively over 2 min) in the visual countermeasure group than the control group (79% survival vs. 33%, t(14) = 2.50, p = 0.027). Following the reentry analogs, subjects demonstrated significantly higher sway prior to recovery (p = 0.0004), which did not differ between control and countermeasure groups. These results imply that providing motion-congruent visual cues may be an effective mean for curbing the development of moderate nausea and increasing comfort following future space missions. |
doi_str_mv | 10.1007/s00221-023-06715-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2873251647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772271417</galeid><sourcerecordid>A772271417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d2515b4e9e81cda02a0cb70d3d5d9c320ef00258c07b5aa189ea742b74d60d2d3</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhoMoOK7-AU8BQfTQayXdmfQcl8WPhQXBr2vIJNUzWbs7YypB99-bdoR1RCSHUMXzVlVSL2NPBZwLAP2KAKQUDci2gbUWqlH32Ep0rWyEgPV9tgIQXdP1YvOQPSK6WcJWw4pNX0LKxY48oR1DvuWWuOUuljljmtBSSciHmGo-pzjbkvkUc4gzp-C-zkjEfUlh3tV4KqPN6PkhUm6GMez2mX-vmcRHO_vK0GP2YLAj4ZPf9xn7_Ob1p8t3zfX7t1eXF9eN61qVGy-VUNsON9gL5y1IC26rwbde-Y1rJeBQ36t6B3qrrBX9Bq3u5FZ3fg1e-vaMvTjWPaT4rSBlMwVyONY5MBYystdt7bHudEWf_YXexJLmOl2leq1BCynuqJ0d0YR5iDlZtxQ1F1pLqUUnllrn_6Dq8TgFF2ccQs2fCF6eCCqT8Ufe2UJkrj5-OGWf_8Hu67rynuJYlmXQKSiPoEuRKOFgDilMNt0aAWZxizm6xVS3mF9uMaqK2qOIDss2Md19w39UPwEoz8CO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887707121</pqid></control><display><type>article</type><title>Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings</title><source>Springer Online Journals Complete</source><creator>Lonner, T. L. ; Allred, A. R. ; Bonarrigo, L. ; Gopinath, A. ; Smith, K. ; Kravets, V. ; Groen, E. L. ; Oman, C. ; DiZio, P. ; Lawson, B. D. ; Clark, T. K.</creator><creatorcontrib>Lonner, T. L. ; Allred, A. R. ; Bonarrigo, L. ; Gopinath, A. ; Smith, K. ; Kravets, V. ; Groen, E. L. ; Oman, C. ; DiZio, P. ; Lawson, B. D. ; Clark, T. K.</creatorcontrib><description>Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop non-pharmaceutical countermeasures to EMS. We assessed the efficacy of a technological countermeasure providing external visual cues following splashdown, where otherwise only nauseogenic internal cabin visual references are available. Our countermeasure provided motion-congruent visual cues of an Earth-fixed scene in virtual reality, which was compared to a control condition with a head-fixed fixation point in virtual reality in a between-subject design with 15 subjects in each group. We tested the countermeasure’s effectiveness at mitigating motion sickness symptoms at the end of a ground-based reentry analog: approximately 1 h of 2Gx centrifugation followed by up to 1 h of wave-like motion. Secondarily, we explored differences in vestibular-mediated balance performance between the two conditions. While Motion Sickness Questionnaire outcomes did not differ detectably between groups, we found significantly better survival rates (with dropout dictated by reporting moderate nausea consecutively over 2 min) in the visual countermeasure group than the control group (79% survival vs. 33%, t(14) = 2.50, p = 0.027). Following the reentry analogs, subjects demonstrated significantly higher sway prior to recovery (p = 0.0004), which did not differ between control and countermeasure groups. These results imply that providing motion-congruent visual cues may be an effective mean for curbing the development of moderate nausea and increasing comfort following future space missions.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-023-06715-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anticholinergics ; Astronauts ; Biomedical and Life Sciences ; Biomedicine ; Centrifugation ; Computer applications ; Drowsiness ; Forecasts and trends ; Health aspects ; Landing behavior ; Microgravity ; Motion detection ; Motion sickness ; Nausea ; Neurology ; Neurosciences ; Physiological aspects ; Prevention ; Research Article ; Survival ; Vestibular system ; Virtual reality ; Visual stimuli</subject><ispartof>Experimental brain research, 2023-12, Vol.241 (11-12), p.2669-2682</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c435t-d2515b4e9e81cda02a0cb70d3d5d9c320ef00258c07b5aa189ea742b74d60d2d3</cites><orcidid>0000-0002-8630-7841 ; 0000-0001-5241-2830 ; 0000-0002-9345-9712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-023-06715-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-023-06715-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Lonner, T. L.</creatorcontrib><creatorcontrib>Allred, A. R.</creatorcontrib><creatorcontrib>Bonarrigo, L.</creatorcontrib><creatorcontrib>Gopinath, A.</creatorcontrib><creatorcontrib>Smith, K.</creatorcontrib><creatorcontrib>Kravets, V.</creatorcontrib><creatorcontrib>Groen, E. L.</creatorcontrib><creatorcontrib>Oman, C.</creatorcontrib><creatorcontrib>DiZio, P.</creatorcontrib><creatorcontrib>Lawson, B. D.</creatorcontrib><creatorcontrib>Clark, T. K.</creatorcontrib><title>Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><description>Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop non-pharmaceutical countermeasures to EMS. We assessed the efficacy of a technological countermeasure providing external visual cues following splashdown, where otherwise only nauseogenic internal cabin visual references are available. Our countermeasure provided motion-congruent visual cues of an Earth-fixed scene in virtual reality, which was compared to a control condition with a head-fixed fixation point in virtual reality in a between-subject design with 15 subjects in each group. We tested the countermeasure’s effectiveness at mitigating motion sickness symptoms at the end of a ground-based reentry analog: approximately 1 h of 2Gx centrifugation followed by up to 1 h of wave-like motion. Secondarily, we explored differences in vestibular-mediated balance performance between the two conditions. While Motion Sickness Questionnaire outcomes did not differ detectably between groups, we found significantly better survival rates (with dropout dictated by reporting moderate nausea consecutively over 2 min) in the visual countermeasure group than the control group (79% survival vs. 33%, t(14) = 2.50, p = 0.027). Following the reentry analogs, subjects demonstrated significantly higher sway prior to recovery (p = 0.0004), which did not differ between control and countermeasure groups. These results imply that providing motion-congruent visual cues may be an effective mean for curbing the development of moderate nausea and increasing comfort following future space missions.</description><subject>Anticholinergics</subject><subject>Astronauts</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Centrifugation</subject><subject>Computer applications</subject><subject>Drowsiness</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Landing behavior</subject><subject>Microgravity</subject><subject>Motion detection</subject><subject>Motion sickness</subject><subject>Nausea</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>Research Article</subject><subject>Survival</subject><subject>Vestibular system</subject><subject>Virtual reality</subject><subject>Visual stimuli</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk2LFDEQhoMoOK7-AU8BQfTQayXdmfQcl8WPhQXBr2vIJNUzWbs7YypB99-bdoR1RCSHUMXzVlVSL2NPBZwLAP2KAKQUDci2gbUWqlH32Ep0rWyEgPV9tgIQXdP1YvOQPSK6WcJWw4pNX0LKxY48oR1DvuWWuOUuljljmtBSSciHmGo-pzjbkvkUc4gzp-C-zkjEfUlh3tV4KqPN6PkhUm6GMez2mX-vmcRHO_vK0GP2YLAj4ZPf9xn7_Ob1p8t3zfX7t1eXF9eN61qVGy-VUNsON9gL5y1IC26rwbde-Y1rJeBQ36t6B3qrrBX9Bq3u5FZ3fg1e-vaMvTjWPaT4rSBlMwVyONY5MBYystdt7bHudEWf_YXexJLmOl2leq1BCynuqJ0d0YR5iDlZtxQ1F1pLqUUnllrn_6Dq8TgFF2ccQs2fCF6eCCqT8Ufe2UJkrj5-OGWf_8Hu67rynuJYlmXQKSiPoEuRKOFgDilMNt0aAWZxizm6xVS3mF9uMaqK2qOIDss2Md19w39UPwEoz8CO</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lonner, T. L.</creator><creator>Allred, A. R.</creator><creator>Bonarrigo, L.</creator><creator>Gopinath, A.</creator><creator>Smith, K.</creator><creator>Kravets, V.</creator><creator>Groen, E. L.</creator><creator>Oman, C.</creator><creator>DiZio, P.</creator><creator>Lawson, B. D.</creator><creator>Clark, T. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8630-7841</orcidid><orcidid>https://orcid.org/0000-0001-5241-2830</orcidid><orcidid>https://orcid.org/0000-0002-9345-9712</orcidid></search><sort><creationdate>20231201</creationdate><title>Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings</title><author>Lonner, T. L. ; Allred, A. R. ; Bonarrigo, L. ; Gopinath, A. ; Smith, K. ; Kravets, V. ; Groen, E. L. ; Oman, C. ; DiZio, P. ; Lawson, B. D. ; Clark, T. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d2515b4e9e81cda02a0cb70d3d5d9c320ef00258c07b5aa189ea742b74d60d2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anticholinergics</topic><topic>Astronauts</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Centrifugation</topic><topic>Computer applications</topic><topic>Drowsiness</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Landing behavior</topic><topic>Microgravity</topic><topic>Motion detection</topic><topic>Motion sickness</topic><topic>Nausea</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>Research Article</topic><topic>Survival</topic><topic>Vestibular system</topic><topic>Virtual reality</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lonner, T. L.</creatorcontrib><creatorcontrib>Allred, A. R.</creatorcontrib><creatorcontrib>Bonarrigo, L.</creatorcontrib><creatorcontrib>Gopinath, A.</creatorcontrib><creatorcontrib>Smith, K.</creatorcontrib><creatorcontrib>Kravets, V.</creatorcontrib><creatorcontrib>Groen, E. L.</creatorcontrib><creatorcontrib>Oman, C.</creatorcontrib><creatorcontrib>DiZio, P.</creatorcontrib><creatorcontrib>Lawson, B. D.</creatorcontrib><creatorcontrib>Clark, T. K.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lonner, T. L.</au><au>Allred, A. R.</au><au>Bonarrigo, L.</au><au>Gopinath, A.</au><au>Smith, K.</au><au>Kravets, V.</au><au>Groen, E. L.</au><au>Oman, C.</au><au>DiZio, P.</au><au>Lawson, B. D.</au><au>Clark, T. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>241</volume><issue>11-12</issue><spage>2669</spage><epage>2682</epage><pages>2669-2682</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><abstract>Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop non-pharmaceutical countermeasures to EMS. We assessed the efficacy of a technological countermeasure providing external visual cues following splashdown, where otherwise only nauseogenic internal cabin visual references are available. Our countermeasure provided motion-congruent visual cues of an Earth-fixed scene in virtual reality, which was compared to a control condition with a head-fixed fixation point in virtual reality in a between-subject design with 15 subjects in each group. We tested the countermeasure’s effectiveness at mitigating motion sickness symptoms at the end of a ground-based reentry analog: approximately 1 h of 2Gx centrifugation followed by up to 1 h of wave-like motion. Secondarily, we explored differences in vestibular-mediated balance performance between the two conditions. While Motion Sickness Questionnaire outcomes did not differ detectably between groups, we found significantly better survival rates (with dropout dictated by reporting moderate nausea consecutively over 2 min) in the visual countermeasure group than the control group (79% survival vs. 33%, t(14) = 2.50, p = 0.027). Following the reentry analogs, subjects demonstrated significantly higher sway prior to recovery (p = 0.0004), which did not differ between control and countermeasure groups. These results imply that providing motion-congruent visual cues may be an effective mean for curbing the development of moderate nausea and increasing comfort following future space missions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00221-023-06715-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8630-7841</orcidid><orcidid>https://orcid.org/0000-0001-5241-2830</orcidid><orcidid>https://orcid.org/0000-0002-9345-9712</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 2023-12, Vol.241 (11-12), p.2669-2682 |
issn | 0014-4819 1432-1106 |
language | eng |
recordid | cdi_proquest_miscellaneous_2873251647 |
source | Springer Online Journals Complete |
subjects | Anticholinergics Astronauts Biomedical and Life Sciences Biomedicine Centrifugation Computer applications Drowsiness Forecasts and trends Health aspects Landing behavior Microgravity Motion detection Motion sickness Nausea Neurology Neurosciences Physiological aspects Prevention Research Article Survival Vestibular system Virtual reality Visual stimuli |
title | Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20reality%20as%20a%20countermeasure%20for%20astronaut%20motion%20sickness%20during%20simulated%20post-flight%20water%20landings&rft.jtitle=Experimental%20brain%20research&rft.au=Lonner,%20T.%20L.&rft.date=2023-12-01&rft.volume=241&rft.issue=11-12&rft.spage=2669&rft.epage=2682&rft.pages=2669-2682&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-023-06715-5&rft_dat=%3Cgale_proqu%3EA772271417%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2887707121&rft_id=info:pmid/&rft_galeid=A772271417&rfr_iscdi=true |