Hydrogen bond energy estimation (H‐BEE) in large molecular clusters: A Python program for quantum chemical investigations

A procedure, derived from the fragmentation‐based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2024-02, Vol.45 (5), p.274-283
Hauptverfasser: Ahirwar, Mini Bharati, Khire, Subodh S., Gadre, Shridhar R., Deshmukh, Milind M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 5
container_start_page 274
container_title Journal of computational chemistry
container_volume 45
creator Ahirwar, Mini Bharati
Khire, Subodh S.
Gadre, Shridhar R.
Deshmukh, Milind M.
description A procedure, derived from the fragmentation‐based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragmentation and high computational cost of correlated quantum chemical methods make the application of this method to large molecular clusters quite formidable. In this article, we report an in‐house developed software for automated hydrogen bond energy estimation (H‐BEE) in large molecular clusters. This user‐friendly software is essentially written in Python and executed on a Linux platform with the Gaussian package at the backend. Two approximations to the MTA‐based procedure, viz. the first spherical shell (SS1) and the Fragments‐in‐Fragments (Frags‐in‐Frags), enabling cost‐effective, automated evaluation of HB energies and cooperativity contributions, are also implemented in this software. The software has been extensively tested on a variety of molecular clusters and is expected to be of immense use, especially in conjunction with correlated methods such as MP2, CCSD(T), and so forth. This work reports the automated H‐BEE code for estimating individual hydrogen bond energies and cooperativity contributions in molecular clusters using MTA‐based method employing (i) the actual molecular cluster, (ii) the SS1 model, and (iii) the Frags‐in‐Frags method. This automated code overcomes the tedious manual fragmentation involved in the respective method.
doi_str_mv 10.1002/jcc.27237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2872804047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911131930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3537-d47a84632b6bb2763aeab834249060b280e3aa7695b95d5b5d743ddd18dc104b3</originalsourceid><addsrcrecordid>eNp1kcsuBEEYRitCGMPCC0glNix61K27uuyYDEMkLEjsKnWb0ZO-UNVNOjYewTN6EsVgIbGqf3Fy8qUOADsYjTBC5HBhzIhwQvkKGGAkskTk_G4VDBAWJMmzFG-AzRAWCCGaZmwdbFDOBaEsHYCXaW99M3c11E1toaudn_fQhbaoVFs0Ndyfvr--nUwmB7CoYan83MGqKZ3p4g1N2YXW-XAEj-F1395H_iHavKrgrPHwsVN121XQ3LuqMKqMiqdP9fxLHbbA2kyVwW1_v0Nwezq5GU-Ty6uz8_HxZWJoSnliGVc5yyjRmdaEZ1Q5pXPKCBMoQ5rkyFGleCZSLVKb6tRyRq21OLcGI6bpEOwvvXHbYxcHyKoIxpWlql3TBUlyHiUMMR7RvT_ooul8HddJIjDGFAuKInWwpIxvQvBuJh98_C_fS4zkZxEZi8ivIpHd_TZ2unL2l_xJEIHDJfBclK7_3yQvxuOl8gNTdJXu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911131930</pqid></control><display><type>article</type><title>Hydrogen bond energy estimation (H‐BEE) in large molecular clusters: A Python program for quantum chemical investigations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ahirwar, Mini Bharati ; Khire, Subodh S. ; Gadre, Shridhar R. ; Deshmukh, Milind M.</creator><creatorcontrib>Ahirwar, Mini Bharati ; Khire, Subodh S. ; Gadre, Shridhar R. ; Deshmukh, Milind M.</creatorcontrib><description>A procedure, derived from the fragmentation‐based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragmentation and high computational cost of correlated quantum chemical methods make the application of this method to large molecular clusters quite formidable. In this article, we report an in‐house developed software for automated hydrogen bond energy estimation (H‐BEE) in large molecular clusters. This user‐friendly software is essentially written in Python and executed on a Linux platform with the Gaussian package at the backend. Two approximations to the MTA‐based procedure, viz. the first spherical shell (SS1) and the Fragments‐in‐Fragments (Frags‐in‐Frags), enabling cost‐effective, automated evaluation of HB energies and cooperativity contributions, are also implemented in this software. The software has been extensively tested on a variety of molecular clusters and is expected to be of immense use, especially in conjunction with correlated methods such as MP2, CCSD(T), and so forth. This work reports the automated H‐BEE code for estimating individual hydrogen bond energies and cooperativity contributions in molecular clusters using MTA‐based method employing (i) the actual molecular cluster, (ii) the SS1 model, and (iii) the Frags‐in‐Frags method. This automated code overcomes the tedious manual fragmentation involved in the respective method.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27237</identifier><identifier>PMID: 37792345</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Automation ; Bond energy ; Computing costs ; Estimation ; first spherical shell model (SS1) ; Fragmentation ; Fragments ; Fragments‐in‐Fragments method and H‐BEE code ; Hydrogen bonds ; individual hydrogen bond (HB) energies ; Molecular clusters ; molecular tailoring approach‐based method ; Quantum chemistry ; Software ; Spherical shells</subject><ispartof>Journal of computational chemistry, 2024-02, Vol.45 (5), p.274-283</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3537-d47a84632b6bb2763aeab834249060b280e3aa7695b95d5b5d743ddd18dc104b3</citedby><cites>FETCH-LOGICAL-c3537-d47a84632b6bb2763aeab834249060b280e3aa7695b95d5b5d743ddd18dc104b3</cites><orcidid>0000-0002-5191-9223 ; 0000-0002-0377-0647 ; 0000-0003-3518-7859 ; 0000-0003-3234-3959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.27237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.27237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37792345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahirwar, Mini Bharati</creatorcontrib><creatorcontrib>Khire, Subodh S.</creatorcontrib><creatorcontrib>Gadre, Shridhar R.</creatorcontrib><creatorcontrib>Deshmukh, Milind M.</creatorcontrib><title>Hydrogen bond energy estimation (H‐BEE) in large molecular clusters: A Python program for quantum chemical investigations</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>A procedure, derived from the fragmentation‐based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragmentation and high computational cost of correlated quantum chemical methods make the application of this method to large molecular clusters quite formidable. In this article, we report an in‐house developed software for automated hydrogen bond energy estimation (H‐BEE) in large molecular clusters. This user‐friendly software is essentially written in Python and executed on a Linux platform with the Gaussian package at the backend. Two approximations to the MTA‐based procedure, viz. the first spherical shell (SS1) and the Fragments‐in‐Fragments (Frags‐in‐Frags), enabling cost‐effective, automated evaluation of HB energies and cooperativity contributions, are also implemented in this software. The software has been extensively tested on a variety of molecular clusters and is expected to be of immense use, especially in conjunction with correlated methods such as MP2, CCSD(T), and so forth. This work reports the automated H‐BEE code for estimating individual hydrogen bond energies and cooperativity contributions in molecular clusters using MTA‐based method employing (i) the actual molecular cluster, (ii) the SS1 model, and (iii) the Frags‐in‐Frags method. This automated code overcomes the tedious manual fragmentation involved in the respective method.</description><subject>Automation</subject><subject>Bond energy</subject><subject>Computing costs</subject><subject>Estimation</subject><subject>first spherical shell model (SS1)</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Fragments‐in‐Fragments method and H‐BEE code</subject><subject>Hydrogen bonds</subject><subject>individual hydrogen bond (HB) energies</subject><subject>Molecular clusters</subject><subject>molecular tailoring approach‐based method</subject><subject>Quantum chemistry</subject><subject>Software</subject><subject>Spherical shells</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kcsuBEEYRitCGMPCC0glNix61K27uuyYDEMkLEjsKnWb0ZO-UNVNOjYewTN6EsVgIbGqf3Fy8qUOADsYjTBC5HBhzIhwQvkKGGAkskTk_G4VDBAWJMmzFG-AzRAWCCGaZmwdbFDOBaEsHYCXaW99M3c11E1toaudn_fQhbaoVFs0Ndyfvr--nUwmB7CoYan83MGqKZ3p4g1N2YXW-XAEj-F1395H_iHavKrgrPHwsVN121XQ3LuqMKqMiqdP9fxLHbbA2kyVwW1_v0Nwezq5GU-Ty6uz8_HxZWJoSnliGVc5yyjRmdaEZ1Q5pXPKCBMoQ5rkyFGleCZSLVKb6tRyRq21OLcGI6bpEOwvvXHbYxcHyKoIxpWlql3TBUlyHiUMMR7RvT_ooul8HddJIjDGFAuKInWwpIxvQvBuJh98_C_fS4zkZxEZi8ivIpHd_TZ2unL2l_xJEIHDJfBclK7_3yQvxuOl8gNTdJXu</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Ahirwar, Mini Bharati</creator><creator>Khire, Subodh S.</creator><creator>Gadre, Shridhar R.</creator><creator>Deshmukh, Milind M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5191-9223</orcidid><orcidid>https://orcid.org/0000-0002-0377-0647</orcidid><orcidid>https://orcid.org/0000-0003-3518-7859</orcidid><orcidid>https://orcid.org/0000-0003-3234-3959</orcidid></search><sort><creationdate>20240215</creationdate><title>Hydrogen bond energy estimation (H‐BEE) in large molecular clusters: A Python program for quantum chemical investigations</title><author>Ahirwar, Mini Bharati ; Khire, Subodh S. ; Gadre, Shridhar R. ; Deshmukh, Milind M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3537-d47a84632b6bb2763aeab834249060b280e3aa7695b95d5b5d743ddd18dc104b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Bond energy</topic><topic>Computing costs</topic><topic>Estimation</topic><topic>first spherical shell model (SS1)</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Fragments‐in‐Fragments method and H‐BEE code</topic><topic>Hydrogen bonds</topic><topic>individual hydrogen bond (HB) energies</topic><topic>Molecular clusters</topic><topic>molecular tailoring approach‐based method</topic><topic>Quantum chemistry</topic><topic>Software</topic><topic>Spherical shells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahirwar, Mini Bharati</creatorcontrib><creatorcontrib>Khire, Subodh S.</creatorcontrib><creatorcontrib>Gadre, Shridhar R.</creatorcontrib><creatorcontrib>Deshmukh, Milind M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahirwar, Mini Bharati</au><au>Khire, Subodh S.</au><au>Gadre, Shridhar R.</au><au>Deshmukh, Milind M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen bond energy estimation (H‐BEE) in large molecular clusters: A Python program for quantum chemical investigations</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2024-02-15</date><risdate>2024</risdate><volume>45</volume><issue>5</issue><spage>274</spage><epage>283</epage><pages>274-283</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>A procedure, derived from the fragmentation‐based molecular tailoring approach (MTA), has been proposed and extensively applied by Deshmukh and Gadre for directly estimating the individual hydrogen bond (HB) energies and cooperativity contributions in molecular clusters. However, the manual fragmentation and high computational cost of correlated quantum chemical methods make the application of this method to large molecular clusters quite formidable. In this article, we report an in‐house developed software for automated hydrogen bond energy estimation (H‐BEE) in large molecular clusters. This user‐friendly software is essentially written in Python and executed on a Linux platform with the Gaussian package at the backend. Two approximations to the MTA‐based procedure, viz. the first spherical shell (SS1) and the Fragments‐in‐Fragments (Frags‐in‐Frags), enabling cost‐effective, automated evaluation of HB energies and cooperativity contributions, are also implemented in this software. The software has been extensively tested on a variety of molecular clusters and is expected to be of immense use, especially in conjunction with correlated methods such as MP2, CCSD(T), and so forth. This work reports the automated H‐BEE code for estimating individual hydrogen bond energies and cooperativity contributions in molecular clusters using MTA‐based method employing (i) the actual molecular cluster, (ii) the SS1 model, and (iii) the Frags‐in‐Frags method. This automated code overcomes the tedious manual fragmentation involved in the respective method.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37792345</pmid><doi>10.1002/jcc.27237</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5191-9223</orcidid><orcidid>https://orcid.org/0000-0002-0377-0647</orcidid><orcidid>https://orcid.org/0000-0003-3518-7859</orcidid><orcidid>https://orcid.org/0000-0003-3234-3959</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2024-02, Vol.45 (5), p.274-283
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2872804047
source Wiley Online Library Journals Frontfile Complete
subjects Automation
Bond energy
Computing costs
Estimation
first spherical shell model (SS1)
Fragmentation
Fragments
Fragments‐in‐Fragments method and H‐BEE code
Hydrogen bonds
individual hydrogen bond (HB) energies
Molecular clusters
molecular tailoring approach‐based method
Quantum chemistry
Software
Spherical shells
title Hydrogen bond energy estimation (H‐BEE) in large molecular clusters: A Python program for quantum chemical investigations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20bond%20energy%20estimation%20(H%E2%80%90BEE)%20in%20large%20molecular%20clusters:%20A%20Python%20program%20for%20quantum%20chemical%20investigations&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Ahirwar,%20Mini%20Bharati&rft.date=2024-02-15&rft.volume=45&rft.issue=5&rft.spage=274&rft.epage=283&rft.pages=274-283&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27237&rft_dat=%3Cproquest_cross%3E2911131930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911131930&rft_id=info:pmid/37792345&rfr_iscdi=true