Visualizing nonlinear vector field topology
We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vecto...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 1998-04, Vol.4 (2), p.109-116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | 2 |
container_start_page | 109 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 4 |
creator | Scheuermann, G. Kruger, H. Menzel, M. Rockwood, A.P. |
description | We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra. |
doi_str_mv | 10.1109/2945.694953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28724423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>694953</ieee_id><sourcerecordid>28724423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</originalsourceid><addsrcrecordid>eNqF0L1PwzAQBXALgUQpTGxMmViqlDvbieMRVXxJlViA1XITuzJy42AnSOWvJ1UqVqZ70v30hkfINcISEeQdlbxYlpLLgp2QGUqOORRQno4ZhMhpSctzcpHSJwByXskZWXy4NGjvfly7zdrQetcaHbNvU_chZtYZ32R96IIP2_0lObPaJ3N1vHPy_vjwtnrO169PL6v7dV4zpH0uBRPcFJVF0XABDUiARrCyZtxSa5mtOZOVpdhw0FZobWGDSEWx4bQqENic3E69XQxfg0m92rlUG-91a8KQFK0E5Zyy_2E59o27jHAxwTqGlKKxqotup-NeIaiDUIfl1LTcqG8m7Ywxf_L4_AXjOmcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26851109</pqid></control><display><type>article</type><title>Visualizing nonlinear vector field topology</title><source>IEEE Electronic Library (IEL)</source><creator>Scheuermann, G. ; Kruger, H. ; Menzel, M. ; Rockwood, A.P.</creator><creatorcontrib>Scheuermann, G. ; Kruger, H. ; Menzel, M. ; Rockwood, A.P.</creatorcontrib><description>We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/2945.694953</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Approximation algorithms ; Geometry ; Linear approximation ; Mathematics ; Piecewise linear approximation ; Piecewise linear techniques ; Topology ; Vectors ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 1998-04, Vol.4 (2), p.109-116</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</citedby><cites>FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/694953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/694953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scheuermann, G.</creatorcontrib><creatorcontrib>Kruger, H.</creatorcontrib><creatorcontrib>Menzel, M.</creatorcontrib><creatorcontrib>Rockwood, A.P.</creatorcontrib><title>Visualizing nonlinear vector field topology</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><description>We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.</description><subject>Algebra</subject><subject>Approximation algorithms</subject><subject>Geometry</subject><subject>Linear approximation</subject><subject>Mathematics</subject><subject>Piecewise linear approximation</subject><subject>Piecewise linear techniques</subject><subject>Topology</subject><subject>Vectors</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0L1PwzAQBXALgUQpTGxMmViqlDvbieMRVXxJlViA1XITuzJy42AnSOWvJ1UqVqZ70v30hkfINcISEeQdlbxYlpLLgp2QGUqOORRQno4ZhMhpSctzcpHSJwByXskZWXy4NGjvfly7zdrQetcaHbNvU_chZtYZ32R96IIP2_0lObPaJ3N1vHPy_vjwtnrO169PL6v7dV4zpH0uBRPcFJVF0XABDUiARrCyZtxSa5mtOZOVpdhw0FZobWGDSEWx4bQqENic3E69XQxfg0m92rlUG-91a8KQFK0E5Zyy_2E59o27jHAxwTqGlKKxqotup-NeIaiDUIfl1LTcqG8m7Ywxf_L4_AXjOmcY</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Scheuermann, G.</creator><creator>Kruger, H.</creator><creator>Menzel, M.</creator><creator>Rockwood, A.P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980401</creationdate><title>Visualizing nonlinear vector field topology</title><author>Scheuermann, G. ; Kruger, H. ; Menzel, M. ; Rockwood, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algebra</topic><topic>Approximation algorithms</topic><topic>Geometry</topic><topic>Linear approximation</topic><topic>Mathematics</topic><topic>Piecewise linear approximation</topic><topic>Piecewise linear techniques</topic><topic>Topology</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheuermann, G.</creatorcontrib><creatorcontrib>Kruger, H.</creatorcontrib><creatorcontrib>Menzel, M.</creatorcontrib><creatorcontrib>Rockwood, A.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scheuermann, G.</au><au>Kruger, H.</au><au>Menzel, M.</au><au>Rockwood, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing nonlinear vector field topology</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><date>1998-04-01</date><risdate>1998</risdate><volume>4</volume><issue>2</issue><spage>109</spage><epage>116</epage><pages>109-116</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.</abstract><pub>IEEE</pub><doi>10.1109/2945.694953</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 1998-04, Vol.4 (2), p.109-116 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_28724423 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Approximation algorithms Geometry Linear approximation Mathematics Piecewise linear approximation Piecewise linear techniques Topology Vectors Visualization |
title | Visualizing nonlinear vector field topology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20nonlinear%20vector%20field%20topology&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Scheuermann,%20G.&rft.date=1998-04-01&rft.volume=4&rft.issue=2&rft.spage=109&rft.epage=116&rft.pages=109-116&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/2945.694953&rft_dat=%3Cproquest_RIE%3E28724423%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26851109&rft_id=info:pmid/&rft_ieee_id=694953&rfr_iscdi=true |