Visualizing nonlinear vector field topology

We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vecto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 1998-04, Vol.4 (2), p.109-116
Hauptverfasser: Scheuermann, G., Kruger, H., Menzel, M., Rockwood, A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 2
container_start_page 109
container_title IEEE transactions on visualization and computer graphics
container_volume 4
creator Scheuermann, G.
Kruger, H.
Menzel, M.
Rockwood, A.P.
description We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.
doi_str_mv 10.1109/2945.694953
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28724423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>694953</ieee_id><sourcerecordid>28724423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</originalsourceid><addsrcrecordid>eNqF0L1PwzAQBXALgUQpTGxMmViqlDvbieMRVXxJlViA1XITuzJy42AnSOWvJ1UqVqZ70v30hkfINcISEeQdlbxYlpLLgp2QGUqOORRQno4ZhMhpSctzcpHSJwByXskZWXy4NGjvfly7zdrQetcaHbNvU_chZtYZ32R96IIP2_0lObPaJ3N1vHPy_vjwtnrO169PL6v7dV4zpH0uBRPcFJVF0XABDUiARrCyZtxSa5mtOZOVpdhw0FZobWGDSEWx4bQqENic3E69XQxfg0m92rlUG-91a8KQFK0E5Zyy_2E59o27jHAxwTqGlKKxqotup-NeIaiDUIfl1LTcqG8m7Ywxf_L4_AXjOmcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26851109</pqid></control><display><type>article</type><title>Visualizing nonlinear vector field topology</title><source>IEEE Electronic Library (IEL)</source><creator>Scheuermann, G. ; Kruger, H. ; Menzel, M. ; Rockwood, A.P.</creator><creatorcontrib>Scheuermann, G. ; Kruger, H. ; Menzel, M. ; Rockwood, A.P.</creatorcontrib><description>We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/2945.694953</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Approximation algorithms ; Geometry ; Linear approximation ; Mathematics ; Piecewise linear approximation ; Piecewise linear techniques ; Topology ; Vectors ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 1998-04, Vol.4 (2), p.109-116</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</citedby><cites>FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/694953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/694953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Scheuermann, G.</creatorcontrib><creatorcontrib>Kruger, H.</creatorcontrib><creatorcontrib>Menzel, M.</creatorcontrib><creatorcontrib>Rockwood, A.P.</creatorcontrib><title>Visualizing nonlinear vector field topology</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><description>We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.</description><subject>Algebra</subject><subject>Approximation algorithms</subject><subject>Geometry</subject><subject>Linear approximation</subject><subject>Mathematics</subject><subject>Piecewise linear approximation</subject><subject>Piecewise linear techniques</subject><subject>Topology</subject><subject>Vectors</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0L1PwzAQBXALgUQpTGxMmViqlDvbieMRVXxJlViA1XITuzJy42AnSOWvJ1UqVqZ70v30hkfINcISEeQdlbxYlpLLgp2QGUqOORRQno4ZhMhpSctzcpHSJwByXskZWXy4NGjvfly7zdrQetcaHbNvU_chZtYZ32R96IIP2_0lObPaJ3N1vHPy_vjwtnrO169PL6v7dV4zpH0uBRPcFJVF0XABDUiARrCyZtxSa5mtOZOVpdhw0FZobWGDSEWx4bQqENic3E69XQxfg0m92rlUG-91a8KQFK0E5Zyy_2E59o27jHAxwTqGlKKxqotup-NeIaiDUIfl1LTcqG8m7Ywxf_L4_AXjOmcY</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Scheuermann, G.</creator><creator>Kruger, H.</creator><creator>Menzel, M.</creator><creator>Rockwood, A.P.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980401</creationdate><title>Visualizing nonlinear vector field topology</title><author>Scheuermann, G. ; Kruger, H. ; Menzel, M. ; Rockwood, A.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-97374e58f17d470d0900d736c34f2ff3fc4398f21d40af7aaf0b11275b4285103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algebra</topic><topic>Approximation algorithms</topic><topic>Geometry</topic><topic>Linear approximation</topic><topic>Mathematics</topic><topic>Piecewise linear approximation</topic><topic>Piecewise linear techniques</topic><topic>Topology</topic><topic>Vectors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheuermann, G.</creatorcontrib><creatorcontrib>Kruger, H.</creatorcontrib><creatorcontrib>Menzel, M.</creatorcontrib><creatorcontrib>Rockwood, A.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scheuermann, G.</au><au>Kruger, H.</au><au>Menzel, M.</au><au>Rockwood, A.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing nonlinear vector field topology</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><date>1998-04-01</date><risdate>1998</risdate><volume>4</volume><issue>2</issue><spage>109</spage><epage>116</epage><pages>109-116</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>We present our results on the visualization of nonlinear vector field topology. The underlying mathematics is done in Clifford algebra, a system describing geometry by extending the usual vector space by a multiplication of vectors. We started with the observation that all known algorithms for vector field topology are based on piecewise linear or bilinear approximation, and that these methods destroy the local topology if nonlinear behavior is present. Our algorithm looks for such situations, chooses an appropriate polynomial approximation in these areas, and, finally, visualizes the topology. This overcomes the problem, and the algorithm is still very fast because we are using linear approximation outside these small but important areas. The paper contains a detailed description of the algorithm and a basic introduction to Clifford algebra.</abstract><pub>IEEE</pub><doi>10.1109/2945.694953</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 1998-04, Vol.4 (2), p.109-116
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_28724423
source IEEE Electronic Library (IEL)
subjects Algebra
Approximation algorithms
Geometry
Linear approximation
Mathematics
Piecewise linear approximation
Piecewise linear techniques
Topology
Vectors
Visualization
title Visualizing nonlinear vector field topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20nonlinear%20vector%20field%20topology&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Scheuermann,%20G.&rft.date=1998-04-01&rft.volume=4&rft.issue=2&rft.spage=109&rft.epage=116&rft.pages=109-116&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/2945.694953&rft_dat=%3Cproquest_RIE%3E28724423%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26851109&rft_id=info:pmid/&rft_ieee_id=694953&rfr_iscdi=true