Which method delivers greater signal‐to‐noise ratio: Structural equation modelling or regression analysis with weighted composites?

Observational data typically contain measurement errors. Covariance‐based structural equation modelling (CB‐SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of mathematical & statistical psychology 2023-11, Vol.76 (3), p.646-678
Hauptverfasser: Yuan, Ke‐Hai, Fang, Yongfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 3
container_start_page 646
container_title British journal of mathematical & statistical psychology
container_volume 76
creator Yuan, Ke‐Hai
Fang, Yongfei
description Observational data typically contain measurement errors. Covariance‐based structural equation modelling (CB‐SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB‐SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal‐to‐noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB‐SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB‐SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.
doi_str_mv 10.1111/bmsp.12293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2872181433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872181433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-8c63c19eecc45719473307bd11379cf791159eda963da4533534e5de5c4453623</originalsourceid><addsrcrecordid>eNpdkctKHUEQhhtR8HjZ-AQN2QRhTFdfTs9kE0RyAyELlSyHtqfOmZaZ6WNXj-IuO7d5xjxJ-qgra1FF_Xz8VPEzdgLiDEp9uh1pcwZSNmqHLaTQuqoV2F22EELYCkDIfXZAdCcESCOWC_b8uw--5yPmPna8wyE8YCK-TugyJk5hPbnh35-_OZY2xUDIk8shfuZXOc0-z8kNHO_nrTbxMRaHIUxrHhNPWFyItrorJk8UiD-G3PNHDOs-Y8d9HDeRQkb6csT2Vm4gPH6bh-zm29frix_V5a_vPy_OLysvpcxV7ZfKQ4PovTYWGm2VEva2A1C28SvbAJgGO9csVee0UcoojaZD43XZllIdso-vvpsU72ek3I6BfDnaTRhnamVtJdSglSroh3foXZxT-eSFAmN0Y-tCnb5SPkWihKt2k8Lo0lMLot1m0m4zaV8yUf8Bt9KDag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871554978</pqid></control><display><type>article</type><title>Which method delivers greater signal‐to‐noise ratio: Structural equation modelling or regression analysis with weighted composites?</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yuan, Ke‐Hai ; Fang, Yongfei</creator><creatorcontrib>Yuan, Ke‐Hai ; Fang, Yongfei</creatorcontrib><description>Observational data typically contain measurement errors. Covariance‐based structural equation modelling (CB‐SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB‐SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal‐to‐noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB‐SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB‐SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.</description><identifier>ISSN: 0007-1102</identifier><identifier>EISSN: 2044-8317</identifier><identifier>DOI: 10.1111/bmsp.12293</identifier><language>eng</language><publisher>Leicester: British Psychological Society</publisher><subject>Composite materials ; Empirical analysis ; Errors ; Estimates ; Least squares ; Mathematical models ; Maximum likelihood method ; Modelling ; Multivariate statistical analysis ; Parameter estimation ; Population distribution ; Regression analysis ; Regression coefficients ; Sampling error ; Signal to noise ratio ; Structural equation modeling</subject><ispartof>British journal of mathematical &amp; statistical psychology, 2023-11, Vol.76 (3), p.646-678</ispartof><rights>Copyright © 2023 The British Psychological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-8c63c19eecc45719473307bd11379cf791159eda963da4533534e5de5c4453623</citedby><cites>FETCH-LOGICAL-c222t-8c63c19eecc45719473307bd11379cf791159eda963da4533534e5de5c4453623</cites><orcidid>0000-0003-0610-1745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yuan, Ke‐Hai</creatorcontrib><creatorcontrib>Fang, Yongfei</creatorcontrib><title>Which method delivers greater signal‐to‐noise ratio: Structural equation modelling or regression analysis with weighted composites?</title><title>British journal of mathematical &amp; statistical psychology</title><description>Observational data typically contain measurement errors. Covariance‐based structural equation modelling (CB‐SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB‐SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal‐to‐noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB‐SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB‐SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.</description><subject>Composite materials</subject><subject>Empirical analysis</subject><subject>Errors</subject><subject>Estimates</subject><subject>Least squares</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>Modelling</subject><subject>Multivariate statistical analysis</subject><subject>Parameter estimation</subject><subject>Population distribution</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Sampling error</subject><subject>Signal to noise ratio</subject><subject>Structural equation modeling</subject><issn>0007-1102</issn><issn>2044-8317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctKHUEQhhtR8HjZ-AQN2QRhTFdfTs9kE0RyAyELlSyHtqfOmZaZ6WNXj-IuO7d5xjxJ-qgra1FF_Xz8VPEzdgLiDEp9uh1pcwZSNmqHLaTQuqoV2F22EELYCkDIfXZAdCcESCOWC_b8uw--5yPmPna8wyE8YCK-TugyJk5hPbnh35-_OZY2xUDIk8shfuZXOc0-z8kNHO_nrTbxMRaHIUxrHhNPWFyItrorJk8UiD-G3PNHDOs-Y8d9HDeRQkb6csT2Vm4gPH6bh-zm29frix_V5a_vPy_OLysvpcxV7ZfKQ4PovTYWGm2VEva2A1C28SvbAJgGO9csVee0UcoojaZD43XZllIdso-vvpsU72ek3I6BfDnaTRhnamVtJdSglSroh3foXZxT-eSFAmN0Y-tCnb5SPkWihKt2k8Lo0lMLot1m0m4zaV8yUf8Bt9KDag</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Yuan, Ke‐Hai</creator><creator>Fang, Yongfei</creator><general>British Psychological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0610-1745</orcidid></search><sort><creationdate>20231101</creationdate><title>Which method delivers greater signal‐to‐noise ratio: Structural equation modelling or regression analysis with weighted composites?</title><author>Yuan, Ke‐Hai ; Fang, Yongfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-8c63c19eecc45719473307bd11379cf791159eda963da4533534e5de5c4453623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite materials</topic><topic>Empirical analysis</topic><topic>Errors</topic><topic>Estimates</topic><topic>Least squares</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>Modelling</topic><topic>Multivariate statistical analysis</topic><topic>Parameter estimation</topic><topic>Population distribution</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Sampling error</topic><topic>Signal to noise ratio</topic><topic>Structural equation modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Ke‐Hai</creatorcontrib><creatorcontrib>Fang, Yongfei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of mathematical &amp; statistical psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Ke‐Hai</au><au>Fang, Yongfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which method delivers greater signal‐to‐noise ratio: Structural equation modelling or regression analysis with weighted composites?</atitle><jtitle>British journal of mathematical &amp; statistical psychology</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>76</volume><issue>3</issue><spage>646</spage><epage>678</epage><pages>646-678</pages><issn>0007-1102</issn><eissn>2044-8317</eissn><abstract>Observational data typically contain measurement errors. Covariance‐based structural equation modelling (CB‐SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB‐SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal‐to‐noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB‐SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB‐SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.</abstract><cop>Leicester</cop><pub>British Psychological Society</pub><doi>10.1111/bmsp.12293</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-0610-1745</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0007-1102
ispartof British journal of mathematical & statistical psychology, 2023-11, Vol.76 (3), p.646-678
issn 0007-1102
2044-8317
language eng
recordid cdi_proquest_miscellaneous_2872181433
source Wiley Online Library Journals Frontfile Complete
subjects Composite materials
Empirical analysis
Errors
Estimates
Least squares
Mathematical models
Maximum likelihood method
Modelling
Multivariate statistical analysis
Parameter estimation
Population distribution
Regression analysis
Regression coefficients
Sampling error
Signal to noise ratio
Structural equation modeling
title Which method delivers greater signal‐to‐noise ratio: Structural equation modelling or regression analysis with weighted composites?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20method%20delivers%20greater%20signal%E2%80%90to%E2%80%90noise%20ratio:%20Structural%20equation%20modelling%20or%20regression%20analysis%20with%20weighted%20composites?&rft.jtitle=British%20journal%20of%20mathematical%20&%20statistical%20psychology&rft.au=Yuan,%20Ke%E2%80%90Hai&rft.date=2023-11-01&rft.volume=76&rft.issue=3&rft.spage=646&rft.epage=678&rft.pages=646-678&rft.issn=0007-1102&rft.eissn=2044-8317&rft_id=info:doi/10.1111/bmsp.12293&rft_dat=%3Cproquest_cross%3E2872181433%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871554978&rft_id=info:pmid/&rfr_iscdi=true