Effect of intragranular/extragranular tara gum on sustained gastrointestinal drug delivery from semi-IPN hydrogel matrices

The present research was undertaken to develop semi-IPN hydrogel matrix tablets of tara gum (TG) and carboxymethyl TG (CMTG) for sustained gastrointestinal delivery of highly water soluble tramadol hydrochloride (TH). The matrix tablets were developed by a hybrid process of wet granulation and direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-12, Vol.253, p.127176-127176, Article 127176
Hauptverfasser: Mukherjee, Kaushik, Roy, Sukanta, Giri, Tapan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present research was undertaken to develop semi-IPN hydrogel matrix tablets of tara gum (TG) and carboxymethyl TG (CMTG) for sustained gastrointestinal delivery of highly water soluble tramadol hydrochloride (TH). The matrix tablets were developed by a hybrid process of wet granulation and direct compression technique. Carboxymethyl TG was crosslinked with dual cross-linking ions (Al3+/Ca2+). The uncross-linked component of the semi-IPN matrix was either incorporated within the granules (intragranular TG) or incorporated outside the granules (extragranular TG), prior to compression. The effect of intragranular/extragranular TG on the swelling, erosion and TH release characteristics from the semi-IPN hydrogel matrix tablets was investigated. The key finding of the investigation indicated that intragranular TG expedited TH release, while extragranular TG sustained TH release. Moreover, the effect of cross-linking ions on viscosity, rigidity, cross-link density and TH release behavior from hydrogel matrices was investigated. In-vivo pharmacokinetic performance of the optimized extragranular TG semi-IPN hydrogel matrix (F15) indicated sustained TH release in gastrointestinal milieu. [Display omitted] •Semi-IPN hydrogel matrices of TG and CMTG were prepared.•Effect of intragranular/extragranular tara gum on erosion, swelling and drug release from hydrogel matrices was investigated.•Extragranular TG sustained TH release while intragranular TG expedited TH release.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127176