A transform theory for a class of group-invariant codes

A binary cyclic code of length of n can be defined by a set of parity-check equations that is invariant under the additive cyclic group generated by A:i to i+1 modulo n. A class of quasicyclic codes that have parity-check equations invariant under the group generated by a subgroup of A and a subgrou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1988-07, Vol.34 (4), p.725-775
1. Verfasser: Tanner, R.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 775
container_issue 4
container_start_page 725
container_title IEEE transactions on information theory
container_volume 34
creator Tanner, R.M.
description A binary cyclic code of length of n can be defined by a set of parity-check equations that is invariant under the additive cyclic group generated by A:i to i+1 modulo n. A class of quasicyclic codes that have parity-check equations invariant under the group generated by a subgroup of A and a subgroup of the multiplicative group M:i to 2/sup k/i modulo n is studied in detail. The Fourier transform transforms the action of the additive group, and a linearized polynomial transform transforms the action of the multiplicative group. The form of the transformed code equations permits a BCH-like bound on the minimum distance of the code. The techniques are illustrated by the construction of several codes that are decodable by the Berlekamp-Massey algorithm and that have parameters that approach or surpass those of the best codes known.< >
doi_str_mv 10.1109/18.9772
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28718598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772</ieee_id><sourcerecordid>28718598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-15c862c3adaa6c84f46760a88382a686e219f7ba63a6c26a926c1825af83bef03</originalsourceid><addsrcrecordid>eNo9kDtPAzEQhC0EEuEhWkpXUF3w-s72uowiXlIkGqitjWPDocs52Bek_HsuBFHtrOabKYaxKxBTAGHvAKfWGHnEJqCUqaxWzTGbCAFY2abBU3ZWyuf4NgrkhJkZHzL1Jaa85sNHSHnHR82J-45K4Sny95y2m6rtvym31A_cp1UoF-wkUlfC5d89Z28P96_zp2rx8vg8ny0qD4hDBcqjlr6mFZH22MRGGy0IsUZJGnWQYKNZkq5HW2qyUo9BqShivQxR1Ofs5tC7yelrG8rg1m3xoeuoD2lbnEQDqCyO4O0B9DmVkkN0m9yuKe8cCLcfxgG6_TAjeX0g2xDCP_Vr_QCZT1wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28718598</pqid></control><display><type>article</type><title>A transform theory for a class of group-invariant codes</title><source>IEEE Electronic Library (IEL)</source><creator>Tanner, R.M.</creator><creatorcontrib>Tanner, R.M.</creatorcontrib><description>A binary cyclic code of length of n can be defined by a set of parity-check equations that is invariant under the additive cyclic group generated by A:i to i+1 modulo n. A class of quasicyclic codes that have parity-check equations invariant under the group generated by a subgroup of A and a subgroup of the multiplicative group M:i to 2/sup k/i modulo n is studied in detail. The Fourier transform transforms the action of the additive group, and a linearized polynomial transform transforms the action of the multiplicative group. The form of the transformed code equations permits a BCH-like bound on the minimum distance of the code. The techniques are illustrated by the construction of several codes that are decodable by the Berlekamp-Massey algorithm and that have parameters that approach or surpass those of the best codes known.&lt; &gt;</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.9772</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decoding ; Electronic circuits ; Equations ; Error correction codes ; Feedback ; Fourier transforms ; Information theory ; Parity check codes ; Polynomials ; Shift registers</subject><ispartof>IEEE transactions on information theory, 1988-07, Vol.34 (4), p.725-775</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c188t-15c862c3adaa6c84f46760a88382a686e219f7ba63a6c26a926c1825af83bef03</citedby><cites>FETCH-LOGICAL-c188t-15c862c3adaa6c84f46760a88382a686e219f7ba63a6c26a926c1825af83bef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9772$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tanner, R.M.</creatorcontrib><title>A transform theory for a class of group-invariant codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A binary cyclic code of length of n can be defined by a set of parity-check equations that is invariant under the additive cyclic group generated by A:i to i+1 modulo n. A class of quasicyclic codes that have parity-check equations invariant under the group generated by a subgroup of A and a subgroup of the multiplicative group M:i to 2/sup k/i modulo n is studied in detail. The Fourier transform transforms the action of the additive group, and a linearized polynomial transform transforms the action of the multiplicative group. The form of the transformed code equations permits a BCH-like bound on the minimum distance of the code. The techniques are illustrated by the construction of several codes that are decodable by the Berlekamp-Massey algorithm and that have parameters that approach or surpass those of the best codes known.&lt; &gt;</description><subject>Decoding</subject><subject>Electronic circuits</subject><subject>Equations</subject><subject>Error correction codes</subject><subject>Feedback</subject><subject>Fourier transforms</subject><subject>Information theory</subject><subject>Parity check codes</subject><subject>Polynomials</subject><subject>Shift registers</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPAzEQhC0EEuEhWkpXUF3w-s72uowiXlIkGqitjWPDocs52Bek_HsuBFHtrOabKYaxKxBTAGHvAKfWGHnEJqCUqaxWzTGbCAFY2abBU3ZWyuf4NgrkhJkZHzL1Jaa85sNHSHnHR82J-45K4Sny95y2m6rtvym31A_cp1UoF-wkUlfC5d89Z28P96_zp2rx8vg8ny0qD4hDBcqjlr6mFZH22MRGGy0IsUZJGnWQYKNZkq5HW2qyUo9BqShivQxR1Ofs5tC7yelrG8rg1m3xoeuoD2lbnEQDqCyO4O0B9DmVkkN0m9yuKe8cCLcfxgG6_TAjeX0g2xDCP_Vr_QCZT1wA</recordid><startdate>19880701</startdate><enddate>19880701</enddate><creator>Tanner, R.M.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19880701</creationdate><title>A transform theory for a class of group-invariant codes</title><author>Tanner, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-15c862c3adaa6c84f46760a88382a686e219f7ba63a6c26a926c1825af83bef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Decoding</topic><topic>Electronic circuits</topic><topic>Equations</topic><topic>Error correction codes</topic><topic>Feedback</topic><topic>Fourier transforms</topic><topic>Information theory</topic><topic>Parity check codes</topic><topic>Polynomials</topic><topic>Shift registers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanner, R.M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tanner, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transform theory for a class of group-invariant codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1988-07-01</date><risdate>1988</risdate><volume>34</volume><issue>4</issue><spage>725</spage><epage>775</epage><pages>725-775</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A binary cyclic code of length of n can be defined by a set of parity-check equations that is invariant under the additive cyclic group generated by A:i to i+1 modulo n. A class of quasicyclic codes that have parity-check equations invariant under the group generated by a subgroup of A and a subgroup of the multiplicative group M:i to 2/sup k/i modulo n is studied in detail. The Fourier transform transforms the action of the additive group, and a linearized polynomial transform transforms the action of the multiplicative group. The form of the transformed code equations permits a BCH-like bound on the minimum distance of the code. The techniques are illustrated by the construction of several codes that are decodable by the Berlekamp-Massey algorithm and that have parameters that approach or surpass those of the best codes known.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/18.9772</doi><tpages>51</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1988-07, Vol.34 (4), p.725-775
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28718598
source IEEE Electronic Library (IEL)
subjects Decoding
Electronic circuits
Equations
Error correction codes
Feedback
Fourier transforms
Information theory
Parity check codes
Polynomials
Shift registers
title A transform theory for a class of group-invariant codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A02%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transform%20theory%20for%20a%20class%20of%20group-invariant%20codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Tanner,%20R.M.&rft.date=1988-07-01&rft.volume=34&rft.issue=4&rft.spage=725&rft.epage=775&rft.pages=725-775&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.9772&rft_dat=%3Cproquest_RIE%3E28718598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28718598&rft_id=info:pmid/&rft_ieee_id=9772&rfr_iscdi=true