Rapid determination of colistin resistance in Klebsiella pneumoniae by MALDI-TOF peak based machine learning algorithm with MATLAB

To date, limited data exist on demonstrating the usefulness of machine learning (ML) algorithms applied to MALDI-TOF in determining colistin resistance among Klebsiella pneumoniae. We aimed to detect colistin resistance in K. pneumoniae using MATLAB on MALDI-TOF database. A total of 260 K. pneumonia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diagnostic microbiology and infectious disease 2023-12, Vol.107 (4), p.116052-116052, Article 116052
Hauptverfasser: Iskender, Secil, Heydarov, Saddam, Yalcin, Metin, Faydaci, Cagri, Kurt, Ozge, Surme, Serkan, Kucukbasmaci, Omer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116052
container_issue 4
container_start_page 116052
container_title Diagnostic microbiology and infectious disease
container_volume 107
creator Iskender, Secil
Heydarov, Saddam
Yalcin, Metin
Faydaci, Cagri
Kurt, Ozge
Surme, Serkan
Kucukbasmaci, Omer
description To date, limited data exist on demonstrating the usefulness of machine learning (ML) algorithms applied to MALDI-TOF in determining colistin resistance among Klebsiella pneumoniae. We aimed to detect colistin resistance in K. pneumoniae using MATLAB on MALDI-TOF database. A total of 260 K. pneumoniae isolates were collected. Three ML models, namely, linear discriminant analysis (LDA), support vector machine, and Ensemble were used as ML algorithms and applied to training data set. The accuracies for the training phase with 200 isolates were found to be 99.3%, 93.1%, and 88.3% for LDA, support vector machine, and Ensemble models, respectively. Accuracy, sensitivity, specificity, and precision values for LDA in the application test set with 60 K. pneumoniae isolates were 81.6%, 66.7%, 91.7%, and 84.2%, respectively. This study provides a rapid and accurate MALDI-TOF MS screening assay for clinical practice in identifying colistin resistance in K. pneumoniae.
doi_str_mv 10.1016/j.diagmicrobio.2023.116052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2871659261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0732889323001621</els_id><sourcerecordid>2871659261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a94141ac0415a827a6bf411ecf0db8b4630ab1d1c85728ac78c7e0bcd22ab7873</originalsourceid><addsrcrecordid>eNqNkEtv1DAUhSNEJYbCf7BYscnUdh522A0tLRWDKqFhbV07N9M7JHawM6Bu-8vxaFiwZHMf0jlHOl9RvBN8Lbhorw7rnmA_kYvBUlhLLqu1EC1v5ItiJbTqSs4Vf1msuKpkqXVXvSpep3TgXMiu5qvi-RvM1LMeF4wTeVgoeBYG5sJIaSHPIqZ8gHfI8vdlRJsIxxHY7PE4BU-AzD6xr5vtzX25e7hlM8IPZiFhzyZwj-SRjQjRk98zGPch0vI4sd95ZtNuu_n4prgYYEz49u--LL7fftpdfy63D3f315tt6apGLSV0tagFOF6LBrRU0NqhFgLdwHurbd1WHKzohdONkhqc0k4ht66XEqzSqros3p9z5xh-HjEtZqLkTl08hmMyUivRNp1sRZZ-OEsz15QiDmaONEF8MoKbE3hzMP-CNyfw5gw-m2_OZsxlfhFGkxxhBthTRLeYPtD_xPwB522UTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871659261</pqid></control><display><type>article</type><title>Rapid determination of colistin resistance in Klebsiella pneumoniae by MALDI-TOF peak based machine learning algorithm with MATLAB</title><source>Elsevier ScienceDirect Journals</source><creator>Iskender, Secil ; Heydarov, Saddam ; Yalcin, Metin ; Faydaci, Cagri ; Kurt, Ozge ; Surme, Serkan ; Kucukbasmaci, Omer</creator><creatorcontrib>Iskender, Secil ; Heydarov, Saddam ; Yalcin, Metin ; Faydaci, Cagri ; Kurt, Ozge ; Surme, Serkan ; Kucukbasmaci, Omer</creatorcontrib><description>To date, limited data exist on demonstrating the usefulness of machine learning (ML) algorithms applied to MALDI-TOF in determining colistin resistance among Klebsiella pneumoniae. We aimed to detect colistin resistance in K. pneumoniae using MATLAB on MALDI-TOF database. A total of 260 K. pneumoniae isolates were collected. Three ML models, namely, linear discriminant analysis (LDA), support vector machine, and Ensemble were used as ML algorithms and applied to training data set. The accuracies for the training phase with 200 isolates were found to be 99.3%, 93.1%, and 88.3% for LDA, support vector machine, and Ensemble models, respectively. Accuracy, sensitivity, specificity, and precision values for LDA in the application test set with 60 K. pneumoniae isolates were 81.6%, 66.7%, 91.7%, and 84.2%, respectively. This study provides a rapid and accurate MALDI-TOF MS screening assay for clinical practice in identifying colistin resistance in K. pneumoniae.</description><identifier>ISSN: 0732-8893</identifier><identifier>EISSN: 1879-0070</identifier><identifier>DOI: 10.1016/j.diagmicrobio.2023.116052</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Colistin resistance ; Klebsiella pneumoniae ; Machine learning ; MALDI-TOF ; MATLAB</subject><ispartof>Diagnostic microbiology and infectious disease, 2023-12, Vol.107 (4), p.116052-116052, Article 116052</ispartof><rights>2023 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a94141ac0415a827a6bf411ecf0db8b4630ab1d1c85728ac78c7e0bcd22ab7873</citedby><cites>FETCH-LOGICAL-c357t-a94141ac0415a827a6bf411ecf0db8b4630ab1d1c85728ac78c7e0bcd22ab7873</cites><orcidid>0000-0003-4610-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diagmicrobio.2023.116052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Iskender, Secil</creatorcontrib><creatorcontrib>Heydarov, Saddam</creatorcontrib><creatorcontrib>Yalcin, Metin</creatorcontrib><creatorcontrib>Faydaci, Cagri</creatorcontrib><creatorcontrib>Kurt, Ozge</creatorcontrib><creatorcontrib>Surme, Serkan</creatorcontrib><creatorcontrib>Kucukbasmaci, Omer</creatorcontrib><title>Rapid determination of colistin resistance in Klebsiella pneumoniae by MALDI-TOF peak based machine learning algorithm with MATLAB</title><title>Diagnostic microbiology and infectious disease</title><description>To date, limited data exist on demonstrating the usefulness of machine learning (ML) algorithms applied to MALDI-TOF in determining colistin resistance among Klebsiella pneumoniae. We aimed to detect colistin resistance in K. pneumoniae using MATLAB on MALDI-TOF database. A total of 260 K. pneumoniae isolates were collected. Three ML models, namely, linear discriminant analysis (LDA), support vector machine, and Ensemble were used as ML algorithms and applied to training data set. The accuracies for the training phase with 200 isolates were found to be 99.3%, 93.1%, and 88.3% for LDA, support vector machine, and Ensemble models, respectively. Accuracy, sensitivity, specificity, and precision values for LDA in the application test set with 60 K. pneumoniae isolates were 81.6%, 66.7%, 91.7%, and 84.2%, respectively. This study provides a rapid and accurate MALDI-TOF MS screening assay for clinical practice in identifying colistin resistance in K. pneumoniae.</description><subject>Colistin resistance</subject><subject>Klebsiella pneumoniae</subject><subject>Machine learning</subject><subject>MALDI-TOF</subject><subject>MATLAB</subject><issn>0732-8893</issn><issn>1879-0070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAUhSNEJYbCf7BYscnUdh522A0tLRWDKqFhbV07N9M7JHawM6Bu-8vxaFiwZHMf0jlHOl9RvBN8Lbhorw7rnmA_kYvBUlhLLqu1EC1v5ItiJbTqSs4Vf1msuKpkqXVXvSpep3TgXMiu5qvi-RvM1LMeF4wTeVgoeBYG5sJIaSHPIqZ8gHfI8vdlRJsIxxHY7PE4BU-AzD6xr5vtzX25e7hlM8IPZiFhzyZwj-SRjQjRk98zGPch0vI4sd95ZtNuu_n4prgYYEz49u--LL7fftpdfy63D3f315tt6apGLSV0tagFOF6LBrRU0NqhFgLdwHurbd1WHKzohdONkhqc0k4ht66XEqzSqros3p9z5xh-HjEtZqLkTl08hmMyUivRNp1sRZZ-OEsz15QiDmaONEF8MoKbE3hzMP-CNyfw5gw-m2_OZsxlfhFGkxxhBthTRLeYPtD_xPwB522UTw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Iskender, Secil</creator><creator>Heydarov, Saddam</creator><creator>Yalcin, Metin</creator><creator>Faydaci, Cagri</creator><creator>Kurt, Ozge</creator><creator>Surme, Serkan</creator><creator>Kucukbasmaci, Omer</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4610-9899</orcidid></search><sort><creationdate>202312</creationdate><title>Rapid determination of colistin resistance in Klebsiella pneumoniae by MALDI-TOF peak based machine learning algorithm with MATLAB</title><author>Iskender, Secil ; Heydarov, Saddam ; Yalcin, Metin ; Faydaci, Cagri ; Kurt, Ozge ; Surme, Serkan ; Kucukbasmaci, Omer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a94141ac0415a827a6bf411ecf0db8b4630ab1d1c85728ac78c7e0bcd22ab7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Colistin resistance</topic><topic>Klebsiella pneumoniae</topic><topic>Machine learning</topic><topic>MALDI-TOF</topic><topic>MATLAB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iskender, Secil</creatorcontrib><creatorcontrib>Heydarov, Saddam</creatorcontrib><creatorcontrib>Yalcin, Metin</creatorcontrib><creatorcontrib>Faydaci, Cagri</creatorcontrib><creatorcontrib>Kurt, Ozge</creatorcontrib><creatorcontrib>Surme, Serkan</creatorcontrib><creatorcontrib>Kucukbasmaci, Omer</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Diagnostic microbiology and infectious disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iskender, Secil</au><au>Heydarov, Saddam</au><au>Yalcin, Metin</au><au>Faydaci, Cagri</au><au>Kurt, Ozge</au><au>Surme, Serkan</au><au>Kucukbasmaci, Omer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid determination of colistin resistance in Klebsiella pneumoniae by MALDI-TOF peak based machine learning algorithm with MATLAB</atitle><jtitle>Diagnostic microbiology and infectious disease</jtitle><date>2023-12</date><risdate>2023</risdate><volume>107</volume><issue>4</issue><spage>116052</spage><epage>116052</epage><pages>116052-116052</pages><artnum>116052</artnum><issn>0732-8893</issn><eissn>1879-0070</eissn><abstract>To date, limited data exist on demonstrating the usefulness of machine learning (ML) algorithms applied to MALDI-TOF in determining colistin resistance among Klebsiella pneumoniae. We aimed to detect colistin resistance in K. pneumoniae using MATLAB on MALDI-TOF database. A total of 260 K. pneumoniae isolates were collected. Three ML models, namely, linear discriminant analysis (LDA), support vector machine, and Ensemble were used as ML algorithms and applied to training data set. The accuracies for the training phase with 200 isolates were found to be 99.3%, 93.1%, and 88.3% for LDA, support vector machine, and Ensemble models, respectively. Accuracy, sensitivity, specificity, and precision values for LDA in the application test set with 60 K. pneumoniae isolates were 81.6%, 66.7%, 91.7%, and 84.2%, respectively. This study provides a rapid and accurate MALDI-TOF MS screening assay for clinical practice in identifying colistin resistance in K. pneumoniae.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.diagmicrobio.2023.116052</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4610-9899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0732-8893
ispartof Diagnostic microbiology and infectious disease, 2023-12, Vol.107 (4), p.116052-116052, Article 116052
issn 0732-8893
1879-0070
language eng
recordid cdi_proquest_miscellaneous_2871659261
source Elsevier ScienceDirect Journals
subjects Colistin resistance
Klebsiella pneumoniae
Machine learning
MALDI-TOF
MATLAB
title Rapid determination of colistin resistance in Klebsiella pneumoniae by MALDI-TOF peak based machine learning algorithm with MATLAB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20determination%20of%20colistin%20resistance%20in%20Klebsiella%20pneumoniae%20by%20MALDI-TOF%20peak%20based%20machine%20learning%20algorithm%20with%20MATLAB&rft.jtitle=Diagnostic%20microbiology%20and%20infectious%20disease&rft.au=Iskender,%20Secil&rft.date=2023-12&rft.volume=107&rft.issue=4&rft.spage=116052&rft.epage=116052&rft.pages=116052-116052&rft.artnum=116052&rft.issn=0732-8893&rft.eissn=1879-0070&rft_id=info:doi/10.1016/j.diagmicrobio.2023.116052&rft_dat=%3Cproquest_cross%3E2871659261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871659261&rft_id=info:pmid/&rft_els_id=S0732889323001621&rfr_iscdi=true