Molecular simulation of crystal growth in long alkanes

We report crystal growth rate data from the melt for C50 and C100 obtained from non-equilibrium molecular dynamics simulations. This extends our previous results for n-eicosane (C20) [Waheed et al. J Chem Phys 2002;116:2301]. We also construct a crystal growth model that accounts for the thermodynam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2005-09, Vol.46 (20), p.8689-8702
Hauptverfasser: Waheed, N., Ko, M.J., Rutledge, G.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8702
container_issue 20
container_start_page 8689
container_title Polymer (Guilford)
container_volume 46
creator Waheed, N.
Ko, M.J.
Rutledge, G.C.
description We report crystal growth rate data from the melt for C50 and C100 obtained from non-equilibrium molecular dynamics simulations. This extends our previous results for n-eicosane (C20) [Waheed et al. J Chem Phys 2002;116:2301]. We also construct a crystal growth model that accounts for the thermodynamic driving force and relaxation time, using WLF theory and a small number of chemically specific quantities that can be estimated from molecular dynamics simulations. Our model can predict growth rates as a function of temperature and molecular weight, up to the entanglement molecular weight. Qualitatively, we see frequent adsorption and desorption of chain segments on the surface in both C50 and C100 systems. We find evidence for a surface nucleus involving 4–5 chain segments that are approximately 20 beads long, shorter than the ultimate thickness of the chain stem in the crystal, and involving segments from multiple chains. Treatment of relaxation dynamics using the Rouse model and the reptation model does not yield a statistically significant difference within the limits of our data, but the Rouse-based fit yields thermodynamic parameters that are in closer accord with those found from fits to experiments.
doi_str_mv 10.1016/j.polymer.2005.02.130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28716050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003238610500710X</els_id><sourcerecordid>28527090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-a53ce9ae73291b909707ce4ffa635e5e3b350d8499459d055dfa1e663e428f923</originalsourceid><addsrcrecordid>eNqNkD1PwzAURS0EEqXwE5CywJbwbMdxPCFU8SWBWGC2XOeluDhxsVNQ_z2pWokRprecd-_VIeScQkGBVlfLYhX8psNYMABRACsohwMyobXkOWOKHpIJAGc5ryt6TE5SWgIAE6yckOo5eLRrb2KWXDfewYU-C21m4yYNxmeLGL6H98z1mQ_9IjP-w_SYTslRa3zCs_2dkre729fZQ_70cv84u3nKbVnJITeCW1QGJR9XzBUoCdJi2bam4gIF8jkX0NSlUqVQDQjRtIZiVXEsWd0qxqfkcpe7iuFzjWnQnUsWvR9HhHXSrJa0AgH_AAWToLag2IE2hpQitnoVXWfiRlPQW516qfc69VanBqZHnePfxb7AJGt8G01vXfp9liAULeuRu95xOGr5cmNKsg57i42LaAfdBPdH0w8snI0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28527090</pqid></control><display><type>article</type><title>Molecular simulation of crystal growth in long alkanes</title><source>ScienceDirect</source><creator>Waheed, N. ; Ko, M.J. ; Rutledge, G.C.</creator><creatorcontrib>Waheed, N. ; Ko, M.J. ; Rutledge, G.C.</creatorcontrib><description>We report crystal growth rate data from the melt for C50 and C100 obtained from non-equilibrium molecular dynamics simulations. This extends our previous results for n-eicosane (C20) [Waheed et al. J Chem Phys 2002;116:2301]. We also construct a crystal growth model that accounts for the thermodynamic driving force and relaxation time, using WLF theory and a small number of chemically specific quantities that can be estimated from molecular dynamics simulations. Our model can predict growth rates as a function of temperature and molecular weight, up to the entanglement molecular weight. Qualitatively, we see frequent adsorption and desorption of chain segments on the surface in both C50 and C100 systems. We find evidence for a surface nucleus involving 4–5 chain segments that are approximately 20 beads long, shorter than the ultimate thickness of the chain stem in the crystal, and involving segments from multiple chains. Treatment of relaxation dynamics using the Rouse model and the reptation model does not yield a statistically significant difference within the limits of our data, but the Rouse-based fit yields thermodynamic parameters that are in closer accord with those found from fits to experiments.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2005.02.130</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alkane ; Applied sciences ; Crystallization ; Exact sciences and technology ; Model compounds ; Molecular dynamics ; Organic polymers ; Physicochemistry of polymers</subject><ispartof>Polymer (Guilford), 2005-09, Vol.46 (20), p.8689-8702</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-a53ce9ae73291b909707ce4ffa635e5e3b350d8499459d055dfa1e663e428f923</citedby><cites>FETCH-LOGICAL-c467t-a53ce9ae73291b909707ce4ffa635e5e3b350d8499459d055dfa1e663e428f923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2005.02.130$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17059148$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Waheed, N.</creatorcontrib><creatorcontrib>Ko, M.J.</creatorcontrib><creatorcontrib>Rutledge, G.C.</creatorcontrib><title>Molecular simulation of crystal growth in long alkanes</title><title>Polymer (Guilford)</title><description>We report crystal growth rate data from the melt for C50 and C100 obtained from non-equilibrium molecular dynamics simulations. This extends our previous results for n-eicosane (C20) [Waheed et al. J Chem Phys 2002;116:2301]. We also construct a crystal growth model that accounts for the thermodynamic driving force and relaxation time, using WLF theory and a small number of chemically specific quantities that can be estimated from molecular dynamics simulations. Our model can predict growth rates as a function of temperature and molecular weight, up to the entanglement molecular weight. Qualitatively, we see frequent adsorption and desorption of chain segments on the surface in both C50 and C100 systems. We find evidence for a surface nucleus involving 4–5 chain segments that are approximately 20 beads long, shorter than the ultimate thickness of the chain stem in the crystal, and involving segments from multiple chains. Treatment of relaxation dynamics using the Rouse model and the reptation model does not yield a statistically significant difference within the limits of our data, but the Rouse-based fit yields thermodynamic parameters that are in closer accord with those found from fits to experiments.</description><subject>Alkane</subject><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Model compounds</subject><subject>Molecular dynamics</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAURS0EEqXwE5CywJbwbMdxPCFU8SWBWGC2XOeluDhxsVNQ_z2pWokRprecd-_VIeScQkGBVlfLYhX8psNYMABRACsohwMyobXkOWOKHpIJAGc5ryt6TE5SWgIAE6yckOo5eLRrb2KWXDfewYU-C21m4yYNxmeLGL6H98z1mQ_9IjP-w_SYTslRa3zCs_2dkre729fZQ_70cv84u3nKbVnJITeCW1QGJR9XzBUoCdJi2bam4gIF8jkX0NSlUqVQDQjRtIZiVXEsWd0qxqfkcpe7iuFzjWnQnUsWvR9HhHXSrJa0AgH_AAWToLag2IE2hpQitnoVXWfiRlPQW516qfc69VanBqZHnePfxb7AJGt8G01vXfp9liAULeuRu95xOGr5cmNKsg57i42LaAfdBPdH0w8snI0U</recordid><startdate>20050923</startdate><enddate>20050923</enddate><creator>Waheed, N.</creator><creator>Ko, M.J.</creator><creator>Rutledge, G.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050923</creationdate><title>Molecular simulation of crystal growth in long alkanes</title><author>Waheed, N. ; Ko, M.J. ; Rutledge, G.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-a53ce9ae73291b909707ce4ffa635e5e3b350d8499459d055dfa1e663e428f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alkane</topic><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Model compounds</topic><topic>Molecular dynamics</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waheed, N.</creatorcontrib><creatorcontrib>Ko, M.J.</creatorcontrib><creatorcontrib>Rutledge, G.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waheed, N.</au><au>Ko, M.J.</au><au>Rutledge, G.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular simulation of crystal growth in long alkanes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2005-09-23</date><risdate>2005</risdate><volume>46</volume><issue>20</issue><spage>8689</spage><epage>8702</epage><pages>8689-8702</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>We report crystal growth rate data from the melt for C50 and C100 obtained from non-equilibrium molecular dynamics simulations. This extends our previous results for n-eicosane (C20) [Waheed et al. J Chem Phys 2002;116:2301]. We also construct a crystal growth model that accounts for the thermodynamic driving force and relaxation time, using WLF theory and a small number of chemically specific quantities that can be estimated from molecular dynamics simulations. Our model can predict growth rates as a function of temperature and molecular weight, up to the entanglement molecular weight. Qualitatively, we see frequent adsorption and desorption of chain segments on the surface in both C50 and C100 systems. We find evidence for a surface nucleus involving 4–5 chain segments that are approximately 20 beads long, shorter than the ultimate thickness of the chain stem in the crystal, and involving segments from multiple chains. Treatment of relaxation dynamics using the Rouse model and the reptation model does not yield a statistically significant difference within the limits of our data, but the Rouse-based fit yields thermodynamic parameters that are in closer accord with those found from fits to experiments.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2005.02.130</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2005-09, Vol.46 (20), p.8689-8702
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_28716050
source ScienceDirect
subjects Alkane
Applied sciences
Crystallization
Exact sciences and technology
Model compounds
Molecular dynamics
Organic polymers
Physicochemistry of polymers
title Molecular simulation of crystal growth in long alkanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20simulation%20of%20crystal%20growth%20in%20long%20alkanes&rft.jtitle=Polymer%20(Guilford)&rft.au=Waheed,%20N.&rft.date=2005-09-23&rft.volume=46&rft.issue=20&rft.spage=8689&rft.epage=8702&rft.pages=8689-8702&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2005.02.130&rft_dat=%3Cproquest_cross%3E28527090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28527090&rft_id=info:pmid/&rft_els_id=S003238610500710X&rfr_iscdi=true