In traffic flow, cellular automata = kinematic waves

This paper proves that the vehicle trajectories predicted by (i) a simple linear car-following model, CF(L), (ii) the kinematic wave model with a triangular fundamental diagram, KW(T), and (iii) two cellular automata models CA(L) and CA(M) match everywhere to within a tolerance comparable with a sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part B: methodological 2006-06, Vol.40 (5), p.396-403
1. Verfasser: Daganzo, Carlos F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 5
container_start_page 396
container_title Transportation research. Part B: methodological
container_volume 40
creator Daganzo, Carlos F.
description This paper proves that the vehicle trajectories predicted by (i) a simple linear car-following model, CF(L), (ii) the kinematic wave model with a triangular fundamental diagram, KW(T), and (iii) two cellular automata models CA(L) and CA(M) match everywhere to within a tolerance comparable with a single “jam spacing”. Thus, CF(L) = KW(T) = CA(L, M).
doi_str_mv 10.1016/j.trb.2005.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28713482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019126150500072X</els_id><sourcerecordid>28713482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-54b823e0f1a4bba2d18e3a7146d69b18f720b1d9e59d847f30b4ff0660e6a3913</originalsourceid><addsrcrecordid>eNp9UE1Lw0AQXUTBWv0B3nLRk4kz2c0mQTxI8aNQ8KLnZbLZha1pUneTFv-9CS14Ex7MHN7HzGPsGiFBQHm_TnpfJSlAlkwAccJmWORlnHKZn7IZYIlxKjE7ZxchrAGAC8AZE8s26j1Z63Rkm25_F2nTNENDPqKh7zbUU_QYfbnWjOvI2dPOhEt2ZqkJ5uo45-zz5flj8Rav3l-Xi6dVrLNU9nEmqiLlBiySqCpKaywMpxyFrGVZYWHzFCqsS5OVdSFyy6ES1oKUYCTxEvmc3R58t777Hkzo1caF6T5qTTcElRY5cjFmzBkeiNp3IXhj1da7DfkfhaCmftRajf2oqR81AcSouTmaU9DUWE-tduFPmGeFxHLiPRx4Zvx054xXQTvTalM7b3Sv6s79k_ILbSN5HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28713482</pqid></control><display><type>article</type><title>In traffic flow, cellular automata = kinematic waves</title><source>Elsevier ScienceDirect Journals</source><creator>Daganzo, Carlos F.</creator><creatorcontrib>Daganzo, Carlos F.</creatorcontrib><description>This paper proves that the vehicle trajectories predicted by (i) a simple linear car-following model, CF(L), (ii) the kinematic wave model with a triangular fundamental diagram, KW(T), and (iii) two cellular automata models CA(L) and CA(M) match everywhere to within a tolerance comparable with a single “jam spacing”. Thus, CF(L) = KW(T) = CA(L, M).</description><identifier>ISSN: 0191-2615</identifier><identifier>EISSN: 1879-2367</identifier><identifier>DOI: 10.1016/j.trb.2005.05.004</identifier><identifier>CODEN: TRBMDY</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cellular automata ; Exact sciences and technology ; Ground, air and sea transportation, marine construction ; Kinematic waves ; Traffic flow ; Transportation planning, management and economics</subject><ispartof>Transportation research. Part B: methodological, 2006-06, Vol.40 (5), p.396-403</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-54b823e0f1a4bba2d18e3a7146d69b18f720b1d9e59d847f30b4ff0660e6a3913</citedby><cites>FETCH-LOGICAL-c526t-54b823e0f1a4bba2d18e3a7146d69b18f720b1d9e59d847f30b4ff0660e6a3913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.trb.2005.05.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17586194$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Daganzo, Carlos F.</creatorcontrib><title>In traffic flow, cellular automata = kinematic waves</title><title>Transportation research. Part B: methodological</title><description>This paper proves that the vehicle trajectories predicted by (i) a simple linear car-following model, CF(L), (ii) the kinematic wave model with a triangular fundamental diagram, KW(T), and (iii) two cellular automata models CA(L) and CA(M) match everywhere to within a tolerance comparable with a single “jam spacing”. Thus, CF(L) = KW(T) = CA(L, M).</description><subject>Applied sciences</subject><subject>Cellular automata</subject><subject>Exact sciences and technology</subject><subject>Ground, air and sea transportation, marine construction</subject><subject>Kinematic waves</subject><subject>Traffic flow</subject><subject>Transportation planning, management and economics</subject><issn>0191-2615</issn><issn>1879-2367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AQXUTBWv0B3nLRk4kz2c0mQTxI8aNQ8KLnZbLZha1pUneTFv-9CS14Ex7MHN7HzGPsGiFBQHm_TnpfJSlAlkwAccJmWORlnHKZn7IZYIlxKjE7ZxchrAGAC8AZE8s26j1Z63Rkm25_F2nTNENDPqKh7zbUU_QYfbnWjOvI2dPOhEt2ZqkJ5uo45-zz5flj8Rav3l-Xi6dVrLNU9nEmqiLlBiySqCpKaywMpxyFrGVZYWHzFCqsS5OVdSFyy6ES1oKUYCTxEvmc3R58t777Hkzo1caF6T5qTTcElRY5cjFmzBkeiNp3IXhj1da7DfkfhaCmftRajf2oqR81AcSouTmaU9DUWE-tduFPmGeFxHLiPRx4Zvx054xXQTvTalM7b3Sv6s79k_ILbSN5HA</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Daganzo, Carlos F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060601</creationdate><title>In traffic flow, cellular automata = kinematic waves</title><author>Daganzo, Carlos F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-54b823e0f1a4bba2d18e3a7146d69b18f720b1d9e59d847f30b4ff0660e6a3913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Cellular automata</topic><topic>Exact sciences and technology</topic><topic>Ground, air and sea transportation, marine construction</topic><topic>Kinematic waves</topic><topic>Traffic flow</topic><topic>Transportation planning, management and economics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daganzo, Carlos F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transportation research. Part B: methodological</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daganzo, Carlos F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In traffic flow, cellular automata = kinematic waves</atitle><jtitle>Transportation research. Part B: methodological</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>40</volume><issue>5</issue><spage>396</spage><epage>403</epage><pages>396-403</pages><issn>0191-2615</issn><eissn>1879-2367</eissn><coden>TRBMDY</coden><abstract>This paper proves that the vehicle trajectories predicted by (i) a simple linear car-following model, CF(L), (ii) the kinematic wave model with a triangular fundamental diagram, KW(T), and (iii) two cellular automata models CA(L) and CA(M) match everywhere to within a tolerance comparable with a single “jam spacing”. Thus, CF(L) = KW(T) = CA(L, M).</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.trb.2005.05.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0191-2615
ispartof Transportation research. Part B: methodological, 2006-06, Vol.40 (5), p.396-403
issn 0191-2615
1879-2367
language eng
recordid cdi_proquest_miscellaneous_28713482
source Elsevier ScienceDirect Journals
subjects Applied sciences
Cellular automata
Exact sciences and technology
Ground, air and sea transportation, marine construction
Kinematic waves
Traffic flow
Transportation planning, management and economics
title In traffic flow, cellular automata = kinematic waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20traffic%20flow,%20cellular%20automata%20=%20kinematic%20waves&rft.jtitle=Transportation%20research.%20Part%20B:%20methodological&rft.au=Daganzo,%20Carlos%20F.&rft.date=2006-06-01&rft.volume=40&rft.issue=5&rft.spage=396&rft.epage=403&rft.pages=396-403&rft.issn=0191-2615&rft.eissn=1879-2367&rft.coden=TRBMDY&rft_id=info:doi/10.1016/j.trb.2005.05.004&rft_dat=%3Cproquest_cross%3E28713482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28713482&rft_id=info:pmid/&rft_els_id=S019126150500072X&rfr_iscdi=true