Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country
ABSTRACT Objective Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that of...
Gespeichert in:
Veröffentlicht in: | Ultrasound in obstetrics & gynecology 2024-03, Vol.63 (3), p.350-357 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 3 |
container_start_page | 350 |
container_title | Ultrasound in obstetrics & gynecology |
container_volume | 63 |
creator | Torres‐Torres, J. Villafan‐Bernal, J. R. Martinez‐Portilla, R. J. Hidalgo‐Carrera, J. A. Estrada‐Gutierrez, G. Adalid‐Martinez‐Cisneros, R. Rojas‐Zepeda, L. Acevedo‐Gallegos, S. Camarena‐Cabrera, D. M. Cruz‐Martínez, M. Y. Espino‐y‐Sosa, S. |
description | ABSTRACT
Objective
Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE.
Methods
We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR).
Results
The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively.
Conclusions
Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology. |
doi_str_mv | 10.1002/uog.27510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870996283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870996283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</originalsourceid><addsrcrecordid>eNp10U1O3TAQB3CrApUH7aIXqCx1QxeBiR3H8bJCfFRCggWsLceZUD8ldmq_CL1dj9AjcBaOwknq1wcskNh45PFPf408hHwp4agEYMdzuDtiUpTwgSzKqlYFSBA7ZAGqhkLWiu2R_ZSWAFBXvP5I9riUsipLtiDLa4x9iKPxFmno6WjsL-fx6c_fAU30zt9RM00x5DbNjk4RO2dXLvisHx_yNVO0gxmn5Ax1nho6uq4bNn3nbRiR2jD7VVx_Iru9GRJ-fq4H5Pbs9Obkori8Ov958uOysFxwKBhjpVUgeptL3zYoTNO1ktu2AuhYfmpQoehlY2w-VSuaqq8MKDQgDGf8gBxuc_PYv2dMKz26ZHEYjMcwJ80aCUrVrOGZfntDl2GOPk-nmeK8YlCJjfq-VTaGlCL2eopuNHGtS9CbBei8AP1_Adl-fU6c2xG7V_ny4xkcb8G9G3D9fpK-vTrfRv4DXbeT3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933420453</pqid></control><display><type>article</type><title>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Torres‐Torres, J. ; Villafan‐Bernal, J. R. ; Martinez‐Portilla, R. J. ; Hidalgo‐Carrera, J. A. ; Estrada‐Gutierrez, G. ; Adalid‐Martinez‐Cisneros, R. ; Rojas‐Zepeda, L. ; Acevedo‐Gallegos, S. ; Camarena‐Cabrera, D. M. ; Cruz‐Martínez, M. Y. ; Espino‐y‐Sosa, S.</creator><creatorcontrib>Torres‐Torres, J. ; Villafan‐Bernal, J. R. ; Martinez‐Portilla, R. J. ; Hidalgo‐Carrera, J. A. ; Estrada‐Gutierrez, G. ; Adalid‐Martinez‐Cisneros, R. ; Rojas‐Zepeda, L. ; Acevedo‐Gallegos, S. ; Camarena‐Cabrera, D. M. ; Cruz‐Martínez, M. Y. ; Espino‐y‐Sosa, S.</creatorcontrib><description>ABSTRACT
Objective
Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE.
Methods
We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR).
Results
The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively.
Conclusions
Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</description><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.27510</identifier><identifier>PMID: 37774112</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Blood pressure ; Eclampsia ; elastic net ; Fetuses ; Growth factors ; Gynecology ; Learning algorithms ; Machine learning ; mean arterial pressure ; Model accuracy ; Morbidity ; Obstetrics ; Performance evaluation ; Placenta growth factor ; placental growth factor ; Prediction models ; Preeclampsia ; Pregnancy complications ; pre‐eclampsia ; Ultrasonic imaging ; Ultrasound ; uterine artery Doppler</subject><ispartof>Ultrasound in obstetrics & gynecology, 2024-03, Vol.63 (3), p.350-357</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</citedby><cites>FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.27510$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.27510$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37774112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres‐Torres, J.</creatorcontrib><creatorcontrib>Villafan‐Bernal, J. R.</creatorcontrib><creatorcontrib>Martinez‐Portilla, R. J.</creatorcontrib><creatorcontrib>Hidalgo‐Carrera, J. A.</creatorcontrib><creatorcontrib>Estrada‐Gutierrez, G.</creatorcontrib><creatorcontrib>Adalid‐Martinez‐Cisneros, R.</creatorcontrib><creatorcontrib>Rojas‐Zepeda, L.</creatorcontrib><creatorcontrib>Acevedo‐Gallegos, S.</creatorcontrib><creatorcontrib>Camarena‐Cabrera, D. M.</creatorcontrib><creatorcontrib>Cruz‐Martínez, M. Y.</creatorcontrib><creatorcontrib>Espino‐y‐Sosa, S.</creatorcontrib><title>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</title><title>Ultrasound in obstetrics & gynecology</title><addtitle>Ultrasound Obstet Gynecol</addtitle><description>ABSTRACT
Objective
Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE.
Methods
We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR).
Results
The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively.
Conclusions
Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</description><subject>Algorithms</subject><subject>Blood pressure</subject><subject>Eclampsia</subject><subject>elastic net</subject><subject>Fetuses</subject><subject>Growth factors</subject><subject>Gynecology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>mean arterial pressure</subject><subject>Model accuracy</subject><subject>Morbidity</subject><subject>Obstetrics</subject><subject>Performance evaluation</subject><subject>Placenta growth factor</subject><subject>placental growth factor</subject><subject>Prediction models</subject><subject>Preeclampsia</subject><subject>Pregnancy complications</subject><subject>pre‐eclampsia</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>uterine artery Doppler</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10U1O3TAQB3CrApUH7aIXqCx1QxeBiR3H8bJCfFRCggWsLceZUD8ldmq_CL1dj9AjcBaOwknq1wcskNh45PFPf408hHwp4agEYMdzuDtiUpTwgSzKqlYFSBA7ZAGqhkLWiu2R_ZSWAFBXvP5I9riUsipLtiDLa4x9iKPxFmno6WjsL-fx6c_fAU30zt9RM00x5DbNjk4RO2dXLvisHx_yNVO0gxmn5Ax1nho6uq4bNn3nbRiR2jD7VVx_Iru9GRJ-fq4H5Pbs9Obkori8Ov958uOysFxwKBhjpVUgeptL3zYoTNO1ktu2AuhYfmpQoehlY2w-VSuaqq8MKDQgDGf8gBxuc_PYv2dMKz26ZHEYjMcwJ80aCUrVrOGZfntDl2GOPk-nmeK8YlCJjfq-VTaGlCL2eopuNHGtS9CbBei8AP1_Adl-fU6c2xG7V_ny4xkcb8G9G3D9fpK-vTrfRv4DXbeT3g</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Torres‐Torres, J.</creator><creator>Villafan‐Bernal, J. R.</creator><creator>Martinez‐Portilla, R. J.</creator><creator>Hidalgo‐Carrera, J. A.</creator><creator>Estrada‐Gutierrez, G.</creator><creator>Adalid‐Martinez‐Cisneros, R.</creator><creator>Rojas‐Zepeda, L.</creator><creator>Acevedo‐Gallegos, S.</creator><creator>Camarena‐Cabrera, D. M.</creator><creator>Cruz‐Martínez, M. Y.</creator><creator>Espino‐y‐Sosa, S.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202403</creationdate><title>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</title><author>Torres‐Torres, J. ; Villafan‐Bernal, J. R. ; Martinez‐Portilla, R. J. ; Hidalgo‐Carrera, J. A. ; Estrada‐Gutierrez, G. ; Adalid‐Martinez‐Cisneros, R. ; Rojas‐Zepeda, L. ; Acevedo‐Gallegos, S. ; Camarena‐Cabrera, D. M. ; Cruz‐Martínez, M. Y. ; Espino‐y‐Sosa, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blood pressure</topic><topic>Eclampsia</topic><topic>elastic net</topic><topic>Fetuses</topic><topic>Growth factors</topic><topic>Gynecology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>mean arterial pressure</topic><topic>Model accuracy</topic><topic>Morbidity</topic><topic>Obstetrics</topic><topic>Performance evaluation</topic><topic>Placenta growth factor</topic><topic>placental growth factor</topic><topic>Prediction models</topic><topic>Preeclampsia</topic><topic>Pregnancy complications</topic><topic>pre‐eclampsia</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>uterine artery Doppler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres‐Torres, J.</creatorcontrib><creatorcontrib>Villafan‐Bernal, J. R.</creatorcontrib><creatorcontrib>Martinez‐Portilla, R. J.</creatorcontrib><creatorcontrib>Hidalgo‐Carrera, J. A.</creatorcontrib><creatorcontrib>Estrada‐Gutierrez, G.</creatorcontrib><creatorcontrib>Adalid‐Martinez‐Cisneros, R.</creatorcontrib><creatorcontrib>Rojas‐Zepeda, L.</creatorcontrib><creatorcontrib>Acevedo‐Gallegos, S.</creatorcontrib><creatorcontrib>Camarena‐Cabrera, D. M.</creatorcontrib><creatorcontrib>Cruz‐Martínez, M. Y.</creatorcontrib><creatorcontrib>Espino‐y‐Sosa, S.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in obstetrics & gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres‐Torres, J.</au><au>Villafan‐Bernal, J. R.</au><au>Martinez‐Portilla, R. J.</au><au>Hidalgo‐Carrera, J. A.</au><au>Estrada‐Gutierrez, G.</au><au>Adalid‐Martinez‐Cisneros, R.</au><au>Rojas‐Zepeda, L.</au><au>Acevedo‐Gallegos, S.</au><au>Camarena‐Cabrera, D. M.</au><au>Cruz‐Martínez, M. Y.</au><au>Espino‐y‐Sosa, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</atitle><jtitle>Ultrasound in obstetrics & gynecology</jtitle><addtitle>Ultrasound Obstet Gynecol</addtitle><date>2024-03</date><risdate>2024</risdate><volume>63</volume><issue>3</issue><spage>350</spage><epage>357</epage><pages>350-357</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><abstract>ABSTRACT
Objective
Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE.
Methods
We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR).
Results
The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively.
Conclusions
Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>37774112</pmid><doi>10.1002/uog.27510</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7692 |
ispartof | Ultrasound in obstetrics & gynecology, 2024-03, Vol.63 (3), p.350-357 |
issn | 0960-7692 1469-0705 |
language | eng |
recordid | cdi_proquest_miscellaneous_2870996283 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Blood pressure Eclampsia elastic net Fetuses Growth factors Gynecology Learning algorithms Machine learning mean arterial pressure Model accuracy Morbidity Obstetrics Performance evaluation Placenta growth factor placental growth factor Prediction models Preeclampsia Pregnancy complications pre‐eclampsia Ultrasonic imaging Ultrasound uterine artery Doppler |
title | Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20machine%E2%80%90learning%20approach%20for%20prediction%20of%C2%A0pre%E2%80%90eclampsia%20in%20a%20middle%E2%80%90income%20country&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Torres%E2%80%90Torres,%20J.&rft.date=2024-03&rft.volume=63&rft.issue=3&rft.spage=350&rft.epage=357&rft.pages=350-357&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.27510&rft_dat=%3Cproquest_cross%3E2870996283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933420453&rft_id=info:pmid/37774112&rfr_iscdi=true |