Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country

ABSTRACT Objective Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in obstetrics & gynecology 2024-03, Vol.63 (3), p.350-357
Hauptverfasser: Torres‐Torres, J., Villafan‐Bernal, J. R., Martinez‐Portilla, R. J., Hidalgo‐Carrera, J. A., Estrada‐Gutierrez, G., Adalid‐Martinez‐Cisneros, R., Rojas‐Zepeda, L., Acevedo‐Gallegos, S., Camarena‐Cabrera, D. M., Cruz‐Martínez, M. Y., Espino‐y‐Sosa, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 3
container_start_page 350
container_title Ultrasound in obstetrics & gynecology
container_volume 63
creator Torres‐Torres, J.
Villafan‐Bernal, J. R.
Martinez‐Portilla, R. J.
Hidalgo‐Carrera, J. A.
Estrada‐Gutierrez, G.
Adalid‐Martinez‐Cisneros, R.
Rojas‐Zepeda, L.
Acevedo‐Gallegos, S.
Camarena‐Cabrera, D. M.
Cruz‐Martínez, M. Y.
Espino‐y‐Sosa, S.
description ABSTRACT Objective Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE. Methods We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR). Results The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively. Conclusions Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
doi_str_mv 10.1002/uog.27510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870996283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870996283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</originalsourceid><addsrcrecordid>eNp10U1O3TAQB3CrApUH7aIXqCx1QxeBiR3H8bJCfFRCggWsLceZUD8ldmq_CL1dj9AjcBaOwknq1wcskNh45PFPf408hHwp4agEYMdzuDtiUpTwgSzKqlYFSBA7ZAGqhkLWiu2R_ZSWAFBXvP5I9riUsipLtiDLa4x9iKPxFmno6WjsL-fx6c_fAU30zt9RM00x5DbNjk4RO2dXLvisHx_yNVO0gxmn5Ax1nho6uq4bNn3nbRiR2jD7VVx_Iru9GRJ-fq4H5Pbs9Obkori8Ov958uOysFxwKBhjpVUgeptL3zYoTNO1ktu2AuhYfmpQoehlY2w-VSuaqq8MKDQgDGf8gBxuc_PYv2dMKz26ZHEYjMcwJ80aCUrVrOGZfntDl2GOPk-nmeK8YlCJjfq-VTaGlCL2eopuNHGtS9CbBei8AP1_Adl-fU6c2xG7V_ny4xkcb8G9G3D9fpK-vTrfRv4DXbeT3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933420453</pqid></control><display><type>article</type><title>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Torres‐Torres, J. ; Villafan‐Bernal, J. R. ; Martinez‐Portilla, R. J. ; Hidalgo‐Carrera, J. A. ; Estrada‐Gutierrez, G. ; Adalid‐Martinez‐Cisneros, R. ; Rojas‐Zepeda, L. ; Acevedo‐Gallegos, S. ; Camarena‐Cabrera, D. M. ; Cruz‐Martínez, M. Y. ; Espino‐y‐Sosa, S.</creator><creatorcontrib>Torres‐Torres, J. ; Villafan‐Bernal, J. R. ; Martinez‐Portilla, R. J. ; Hidalgo‐Carrera, J. A. ; Estrada‐Gutierrez, G. ; Adalid‐Martinez‐Cisneros, R. ; Rojas‐Zepeda, L. ; Acevedo‐Gallegos, S. ; Camarena‐Cabrera, D. M. ; Cruz‐Martínez, M. Y. ; Espino‐y‐Sosa, S.</creatorcontrib><description>ABSTRACT Objective Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE. Methods We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR). Results The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively. Conclusions Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</description><identifier>ISSN: 0960-7692</identifier><identifier>EISSN: 1469-0705</identifier><identifier>DOI: 10.1002/uog.27510</identifier><identifier>PMID: 37774112</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Blood pressure ; Eclampsia ; elastic net ; Fetuses ; Growth factors ; Gynecology ; Learning algorithms ; Machine learning ; mean arterial pressure ; Model accuracy ; Morbidity ; Obstetrics ; Performance evaluation ; Placenta growth factor ; placental growth factor ; Prediction models ; Preeclampsia ; Pregnancy complications ; pre‐eclampsia ; Ultrasonic imaging ; Ultrasound ; uterine artery Doppler</subject><ispartof>Ultrasound in obstetrics &amp; gynecology, 2024-03, Vol.63 (3), p.350-357</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2023 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</citedby><cites>FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fuog.27510$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fuog.27510$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37774112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torres‐Torres, J.</creatorcontrib><creatorcontrib>Villafan‐Bernal, J. R.</creatorcontrib><creatorcontrib>Martinez‐Portilla, R. J.</creatorcontrib><creatorcontrib>Hidalgo‐Carrera, J. A.</creatorcontrib><creatorcontrib>Estrada‐Gutierrez, G.</creatorcontrib><creatorcontrib>Adalid‐Martinez‐Cisneros, R.</creatorcontrib><creatorcontrib>Rojas‐Zepeda, L.</creatorcontrib><creatorcontrib>Acevedo‐Gallegos, S.</creatorcontrib><creatorcontrib>Camarena‐Cabrera, D. M.</creatorcontrib><creatorcontrib>Cruz‐Martínez, M. Y.</creatorcontrib><creatorcontrib>Espino‐y‐Sosa, S.</creatorcontrib><title>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</title><title>Ultrasound in obstetrics &amp; gynecology</title><addtitle>Ultrasound Obstet Gynecol</addtitle><description>ABSTRACT Objective Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE. Methods We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR). Results The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively. Conclusions Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</description><subject>Algorithms</subject><subject>Blood pressure</subject><subject>Eclampsia</subject><subject>elastic net</subject><subject>Fetuses</subject><subject>Growth factors</subject><subject>Gynecology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>mean arterial pressure</subject><subject>Model accuracy</subject><subject>Morbidity</subject><subject>Obstetrics</subject><subject>Performance evaluation</subject><subject>Placenta growth factor</subject><subject>placental growth factor</subject><subject>Prediction models</subject><subject>Preeclampsia</subject><subject>Pregnancy complications</subject><subject>pre‐eclampsia</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>uterine artery Doppler</subject><issn>0960-7692</issn><issn>1469-0705</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10U1O3TAQB3CrApUH7aIXqCx1QxeBiR3H8bJCfFRCggWsLceZUD8ldmq_CL1dj9AjcBaOwknq1wcskNh45PFPf408hHwp4agEYMdzuDtiUpTwgSzKqlYFSBA7ZAGqhkLWiu2R_ZSWAFBXvP5I9riUsipLtiDLa4x9iKPxFmno6WjsL-fx6c_fAU30zt9RM00x5DbNjk4RO2dXLvisHx_yNVO0gxmn5Ax1nho6uq4bNn3nbRiR2jD7VVx_Iru9GRJ-fq4H5Pbs9Obkori8Ov958uOysFxwKBhjpVUgeptL3zYoTNO1ktu2AuhYfmpQoehlY2w-VSuaqq8MKDQgDGf8gBxuc_PYv2dMKz26ZHEYjMcwJ80aCUrVrOGZfntDl2GOPk-nmeK8YlCJjfq-VTaGlCL2eopuNHGtS9CbBei8AP1_Adl-fU6c2xG7V_ny4xkcb8G9G3D9fpK-vTrfRv4DXbeT3g</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Torres‐Torres, J.</creator><creator>Villafan‐Bernal, J. R.</creator><creator>Martinez‐Portilla, R. J.</creator><creator>Hidalgo‐Carrera, J. A.</creator><creator>Estrada‐Gutierrez, G.</creator><creator>Adalid‐Martinez‐Cisneros, R.</creator><creator>Rojas‐Zepeda, L.</creator><creator>Acevedo‐Gallegos, S.</creator><creator>Camarena‐Cabrera, D. M.</creator><creator>Cruz‐Martínez, M. Y.</creator><creator>Espino‐y‐Sosa, S.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202403</creationdate><title>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</title><author>Torres‐Torres, J. ; Villafan‐Bernal, J. R. ; Martinez‐Portilla, R. J. ; Hidalgo‐Carrera, J. A. ; Estrada‐Gutierrez, G. ; Adalid‐Martinez‐Cisneros, R. ; Rojas‐Zepeda, L. ; Acevedo‐Gallegos, S. ; Camarena‐Cabrera, D. M. ; Cruz‐Martínez, M. Y. ; Espino‐y‐Sosa, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-2221c905fc1c9fb8e5a8db73cb400d2c908e9e5f78ac5f79b584f4a09ea05a323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Blood pressure</topic><topic>Eclampsia</topic><topic>elastic net</topic><topic>Fetuses</topic><topic>Growth factors</topic><topic>Gynecology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>mean arterial pressure</topic><topic>Model accuracy</topic><topic>Morbidity</topic><topic>Obstetrics</topic><topic>Performance evaluation</topic><topic>Placenta growth factor</topic><topic>placental growth factor</topic><topic>Prediction models</topic><topic>Preeclampsia</topic><topic>Pregnancy complications</topic><topic>pre‐eclampsia</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>uterine artery Doppler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torres‐Torres, J.</creatorcontrib><creatorcontrib>Villafan‐Bernal, J. R.</creatorcontrib><creatorcontrib>Martinez‐Portilla, R. J.</creatorcontrib><creatorcontrib>Hidalgo‐Carrera, J. A.</creatorcontrib><creatorcontrib>Estrada‐Gutierrez, G.</creatorcontrib><creatorcontrib>Adalid‐Martinez‐Cisneros, R.</creatorcontrib><creatorcontrib>Rojas‐Zepeda, L.</creatorcontrib><creatorcontrib>Acevedo‐Gallegos, S.</creatorcontrib><creatorcontrib>Camarena‐Cabrera, D. M.</creatorcontrib><creatorcontrib>Cruz‐Martínez, M. Y.</creatorcontrib><creatorcontrib>Espino‐y‐Sosa, S.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres‐Torres, J.</au><au>Villafan‐Bernal, J. R.</au><au>Martinez‐Portilla, R. J.</au><au>Hidalgo‐Carrera, J. A.</au><au>Estrada‐Gutierrez, G.</au><au>Adalid‐Martinez‐Cisneros, R.</au><au>Rojas‐Zepeda, L.</au><au>Acevedo‐Gallegos, S.</au><au>Camarena‐Cabrera, D. M.</au><au>Cruz‐Martínez, M. Y.</au><au>Espino‐y‐Sosa, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country</atitle><jtitle>Ultrasound in obstetrics &amp; gynecology</jtitle><addtitle>Ultrasound Obstet Gynecol</addtitle><date>2024-03</date><risdate>2024</risdate><volume>63</volume><issue>3</issue><spage>350</spage><epage>357</epage><pages>350-357</pages><issn>0960-7692</issn><eissn>1469-0705</eissn><abstract>ABSTRACT Objective Pre‐eclampsia (PE) is a serious complication of pregnancy associated with maternal and fetal morbidity and mortality. As current prediction models have limitations and may not be applicable in resource‐limited settings, we aimed to develop a machine‐learning (ML) algorithm that offers a potential solution for developing accurate and efficient first‐trimester prediction of PE. Methods We conducted a prospective cohort study in Mexico City, Mexico to develop a first‐trimester prediction model for preterm PE (pPE) using ML. Maternal characteristics and locally derived multiples of the median (MoM) values for mean arterial pressure, uterine artery pulsatility index and serum placental growth factor were used for variable selection. The dataset was split into training, validation and test sets. An elastic‐net method was employed for predictor selection, and model performance was evaluated using area under the receiver‐operating‐characteristics curve (AUC) and detection rates (DR) at 10% false‐positive rates (FPR). Results The final analysis included 3050 pregnant women, of whom 124 (4.07%) developed PE. The ML model showed good performance, with AUCs of 0.897, 0.963 and 0.778 for pPE, early‐onset PE (ePE) and any type of PE (all‐PE), respectively. The DRs at 10% FPR were 76.5%, 88.2% and 50.1% for pPE, ePE and all‐PE, respectively. Conclusions Our ML model demonstrated high accuracy in predicting pPE and ePE using first‐trimester maternal characteristics and locally derived MoM. The model may provide an efficient and accessible tool for early prediction of PE, facilitating timely intervention and improved maternal and fetal outcome. © 2023 The Authors. Ultrasound in Obstetrics &amp; Gynecology published by John Wiley &amp; Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>37774112</pmid><doi>10.1002/uog.27510</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7692
ispartof Ultrasound in obstetrics & gynecology, 2024-03, Vol.63 (3), p.350-357
issn 0960-7692
1469-0705
language eng
recordid cdi_proquest_miscellaneous_2870996283
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Blood pressure
Eclampsia
elastic net
Fetuses
Growth factors
Gynecology
Learning algorithms
Machine learning
mean arterial pressure
Model accuracy
Morbidity
Obstetrics
Performance evaluation
Placenta growth factor
placental growth factor
Prediction models
Preeclampsia
Pregnancy complications
pre‐eclampsia
Ultrasonic imaging
Ultrasound
uterine artery Doppler
title Performance of machine‐learning approach for prediction of pre‐eclampsia in a middle‐income country
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20machine%E2%80%90learning%20approach%20for%20prediction%20of%C2%A0pre%E2%80%90eclampsia%20in%20a%20middle%E2%80%90income%20country&rft.jtitle=Ultrasound%20in%20obstetrics%20&%20gynecology&rft.au=Torres%E2%80%90Torres,%20J.&rft.date=2024-03&rft.volume=63&rft.issue=3&rft.spage=350&rft.epage=357&rft.pages=350-357&rft.issn=0960-7692&rft.eissn=1469-0705&rft_id=info:doi/10.1002/uog.27510&rft_dat=%3Cproquest_cross%3E2870996283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933420453&rft_id=info:pmid/37774112&rfr_iscdi=true