Porphyrin Supramolecular Nanoassembly/C3N4 Nanosheet S‑Scheme Heterojunctions for Selective Photocatalytic CO2 Reduction toward CO

The photocatalytic reduction of CO2 with H2O into valuable chemicals is a sustainable carbon-neutral technology for renewable energy; however, the photocatalytic activity and product selectivity remain challenging. Herein, an S-scheme heterojunction photocatalyst with superior CO2 photoreduction per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-10, Vol.15 (40), p.47070-47080
Hauptverfasser: Jia, Zhenzhen, Xiao, Yuting, Guo, Shien, Xiong, Liangliang, Yu, Peng, Lu, Tianyu, Song, Renjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47080
container_issue 40
container_start_page 47070
container_title ACS applied materials & interfaces
container_volume 15
creator Jia, Zhenzhen
Xiao, Yuting
Guo, Shien
Xiong, Liangliang
Yu, Peng
Lu, Tianyu
Song, Renjie
description The photocatalytic reduction of CO2 with H2O into valuable chemicals is a sustainable carbon-neutral technology for renewable energy; however, the photocatalytic activity and product selectivity remain challenging. Herein, an S-scheme heterojunction photocatalyst with superior CO2 photoreduction performanceporous C3N4 (CN) nanosheets anchored with zinc­(II) tetra­(4-cyanophenyl)­porphyrin (ZnTP) nanoassemblies (denoted as ZnTP/CN)was designed and prepared via a simple self-assembly process. The constructed ZnTP/CN heterojunction had rich accessible active sites, improved CO2 absorption capacity, and high charge carrier separation efficiency caused by the S-scheme heterojunction. As a result, the obtained ZnTP/CN catalyst exhibited considerable activity for photocatalytic CO2 reduction, yielding CO with a generation rate of 19.4 μmol g–1·h–1 and a high selectivity of 95.8%, which is much higher than that of pristine CN nanosheets (4.53 μmol g–1·h–1, 57.4%). In addition, theoretical calculations and in situ Fourier transform infrared spectra demonstrated that the Zn sites in the porphyrin unit favor CO2 activation and *COOH formation as well as CO desorption, thereby affording a high CO selectivity. This work provides insight into the design and fabrication of efficient S-scheme heterostructure photocatalysts for solar energy storage.
doi_str_mv 10.1021/acsami.3c10503
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870996252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870996252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-dcf73a1423ac92bd17c22654bcb59b85ccd75c4dcbfcae57c2954ac10bd574d53</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURgdRsFa3rmcpQtv5bZqlBLVCaYvRdZjcTEhKkqkzE6U7F76Ar-iTOLbF1b189_BxOQhdUzKmhNGJAqfaesyBEkn4CRrQWIjRjEl2-r8LcY4unNsQMuWMyAH6Whu7rXa27nDab61qTaOhb5TFS9UZ5Zxu82Y3SfhS7BNXae1x-vP5nUKlW43n2mtrNn0Hvjadw6WxONWhxNfvGq8r4w0or5qdrwEnK4afddHvWezNh7JFCC_RWakap6-Oc4heH-5fkvlosXp8Su4WI8UY96MCyogrKhhXELO8oBEwNpUih1zG-UwCFJEEUUBegtIyXGMpVNCRFzISheRDdHPo3Vrz1mvns7Z2oJtGddr0LmOziMTxNBgL6O0BDVazjeltFx7LKMn-VGcH1dlRNf8F8x124g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870996252</pqid></control><display><type>article</type><title>Porphyrin Supramolecular Nanoassembly/C3N4 Nanosheet S‑Scheme Heterojunctions for Selective Photocatalytic CO2 Reduction toward CO</title><source>ACS Publications</source><creator>Jia, Zhenzhen ; Xiao, Yuting ; Guo, Shien ; Xiong, Liangliang ; Yu, Peng ; Lu, Tianyu ; Song, Renjie</creator><creatorcontrib>Jia, Zhenzhen ; Xiao, Yuting ; Guo, Shien ; Xiong, Liangliang ; Yu, Peng ; Lu, Tianyu ; Song, Renjie</creatorcontrib><description>The photocatalytic reduction of CO2 with H2O into valuable chemicals is a sustainable carbon-neutral technology for renewable energy; however, the photocatalytic activity and product selectivity remain challenging. Herein, an S-scheme heterojunction photocatalyst with superior CO2 photoreduction performanceporous C3N4 (CN) nanosheets anchored with zinc­(II) tetra­(4-cyanophenyl)­porphyrin (ZnTP) nanoassemblies (denoted as ZnTP/CN)was designed and prepared via a simple self-assembly process. The constructed ZnTP/CN heterojunction had rich accessible active sites, improved CO2 absorption capacity, and high charge carrier separation efficiency caused by the S-scheme heterojunction. As a result, the obtained ZnTP/CN catalyst exhibited considerable activity for photocatalytic CO2 reduction, yielding CO with a generation rate of 19.4 μmol g–1·h–1 and a high selectivity of 95.8%, which is much higher than that of pristine CN nanosheets (4.53 μmol g–1·h–1, 57.4%). In addition, theoretical calculations and in situ Fourier transform infrared spectra demonstrated that the Zn sites in the porphyrin unit favor CO2 activation and *COOH formation as well as CO desorption, thereby affording a high CO selectivity. This work provides insight into the design and fabrication of efficient S-scheme heterostructure photocatalysts for solar energy storage.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c10503</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-10, Vol.15 (40), p.47070-47080</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8708-7433 ; 0000-0001-7928-0022 ; 0000-0002-1488-3911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c10503$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c10503$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Jia, Zhenzhen</creatorcontrib><creatorcontrib>Xiao, Yuting</creatorcontrib><creatorcontrib>Guo, Shien</creatorcontrib><creatorcontrib>Xiong, Liangliang</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Lu, Tianyu</creatorcontrib><creatorcontrib>Song, Renjie</creatorcontrib><title>Porphyrin Supramolecular Nanoassembly/C3N4 Nanosheet S‑Scheme Heterojunctions for Selective Photocatalytic CO2 Reduction toward CO</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The photocatalytic reduction of CO2 with H2O into valuable chemicals is a sustainable carbon-neutral technology for renewable energy; however, the photocatalytic activity and product selectivity remain challenging. Herein, an S-scheme heterojunction photocatalyst with superior CO2 photoreduction performanceporous C3N4 (CN) nanosheets anchored with zinc­(II) tetra­(4-cyanophenyl)­porphyrin (ZnTP) nanoassemblies (denoted as ZnTP/CN)was designed and prepared via a simple self-assembly process. The constructed ZnTP/CN heterojunction had rich accessible active sites, improved CO2 absorption capacity, and high charge carrier separation efficiency caused by the S-scheme heterojunction. As a result, the obtained ZnTP/CN catalyst exhibited considerable activity for photocatalytic CO2 reduction, yielding CO with a generation rate of 19.4 μmol g–1·h–1 and a high selectivity of 95.8%, which is much higher than that of pristine CN nanosheets (4.53 μmol g–1·h–1, 57.4%). In addition, theoretical calculations and in situ Fourier transform infrared spectra demonstrated that the Zn sites in the porphyrin unit favor CO2 activation and *COOH formation as well as CO desorption, thereby affording a high CO selectivity. This work provides insight into the design and fabrication of efficient S-scheme heterostructure photocatalysts for solar energy storage.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AURgdRsFa3rmcpQtv5bZqlBLVCaYvRdZjcTEhKkqkzE6U7F76Ar-iTOLbF1b189_BxOQhdUzKmhNGJAqfaesyBEkn4CRrQWIjRjEl2-r8LcY4unNsQMuWMyAH6Whu7rXa27nDab61qTaOhb5TFS9UZ5Zxu82Y3SfhS7BNXae1x-vP5nUKlW43n2mtrNn0Hvjadw6WxONWhxNfvGq8r4w0or5qdrwEnK4afddHvWezNh7JFCC_RWakap6-Oc4heH-5fkvlosXp8Su4WI8UY96MCyogrKhhXELO8oBEwNpUih1zG-UwCFJEEUUBegtIyXGMpVNCRFzISheRDdHPo3Vrz1mvns7Z2oJtGddr0LmOziMTxNBgL6O0BDVazjeltFx7LKMn-VGcH1dlRNf8F8x124g</recordid><startdate>20231011</startdate><enddate>20231011</enddate><creator>Jia, Zhenzhen</creator><creator>Xiao, Yuting</creator><creator>Guo, Shien</creator><creator>Xiong, Liangliang</creator><creator>Yu, Peng</creator><creator>Lu, Tianyu</creator><creator>Song, Renjie</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8708-7433</orcidid><orcidid>https://orcid.org/0000-0001-7928-0022</orcidid><orcidid>https://orcid.org/0000-0002-1488-3911</orcidid></search><sort><creationdate>20231011</creationdate><title>Porphyrin Supramolecular Nanoassembly/C3N4 Nanosheet S‑Scheme Heterojunctions for Selective Photocatalytic CO2 Reduction toward CO</title><author>Jia, Zhenzhen ; Xiao, Yuting ; Guo, Shien ; Xiong, Liangliang ; Yu, Peng ; Lu, Tianyu ; Song, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-dcf73a1423ac92bd17c22654bcb59b85ccd75c4dcbfcae57c2954ac10bd574d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhenzhen</creatorcontrib><creatorcontrib>Xiao, Yuting</creatorcontrib><creatorcontrib>Guo, Shien</creatorcontrib><creatorcontrib>Xiong, Liangliang</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Lu, Tianyu</creatorcontrib><creatorcontrib>Song, Renjie</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Zhenzhen</au><au>Xiao, Yuting</au><au>Guo, Shien</au><au>Xiong, Liangliang</au><au>Yu, Peng</au><au>Lu, Tianyu</au><au>Song, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porphyrin Supramolecular Nanoassembly/C3N4 Nanosheet S‑Scheme Heterojunctions for Selective Photocatalytic CO2 Reduction toward CO</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-10-11</date><risdate>2023</risdate><volume>15</volume><issue>40</issue><spage>47070</spage><epage>47080</epage><pages>47070-47080</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The photocatalytic reduction of CO2 with H2O into valuable chemicals is a sustainable carbon-neutral technology for renewable energy; however, the photocatalytic activity and product selectivity remain challenging. Herein, an S-scheme heterojunction photocatalyst with superior CO2 photoreduction performanceporous C3N4 (CN) nanosheets anchored with zinc­(II) tetra­(4-cyanophenyl)­porphyrin (ZnTP) nanoassemblies (denoted as ZnTP/CN)was designed and prepared via a simple self-assembly process. The constructed ZnTP/CN heterojunction had rich accessible active sites, improved CO2 absorption capacity, and high charge carrier separation efficiency caused by the S-scheme heterojunction. As a result, the obtained ZnTP/CN catalyst exhibited considerable activity for photocatalytic CO2 reduction, yielding CO with a generation rate of 19.4 μmol g–1·h–1 and a high selectivity of 95.8%, which is much higher than that of pristine CN nanosheets (4.53 μmol g–1·h–1, 57.4%). In addition, theoretical calculations and in situ Fourier transform infrared spectra demonstrated that the Zn sites in the porphyrin unit favor CO2 activation and *COOH formation as well as CO desorption, thereby affording a high CO selectivity. This work provides insight into the design and fabrication of efficient S-scheme heterostructure photocatalysts for solar energy storage.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c10503</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8708-7433</orcidid><orcidid>https://orcid.org/0000-0001-7928-0022</orcidid><orcidid>https://orcid.org/0000-0002-1488-3911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-10, Vol.15 (40), p.47070-47080
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2870996252
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Porphyrin Supramolecular Nanoassembly/C3N4 Nanosheet S‑Scheme Heterojunctions for Selective Photocatalytic CO2 Reduction toward CO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porphyrin%20Supramolecular%20Nanoassembly/C3N4%20Nanosheet%20S%E2%80%91Scheme%20Heterojunctions%20for%20Selective%20Photocatalytic%20CO2%20Reduction%20toward%20CO&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jia,%20Zhenzhen&rft.date=2023-10-11&rft.volume=15&rft.issue=40&rft.spage=47070&rft.epage=47080&rft.pages=47070-47080&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c10503&rft_dat=%3Cproquest_acs_j%3E2870996252%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870996252&rft_id=info:pmid/&rfr_iscdi=true