Development and external validation of a machine learning-based model to classify uric acid stones in patients with kidney stones of Hounsfield units < 800

The correct diagnosis of uric acid (UA) stones has important clinical implications since patients with a high risk of perioperative morbidity may be spared surgical intervention and be offered alkalization therapy. We developed and validated a machine learning (ML)-based model to identify stones on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Urolithiasis 2023-09, Vol.51 (1), p.117-117, Article 117
Hauptverfasser: Chew, Ben H., Wong, Victor K. F., Halawani, Abdulghafour, Lee, Sujin, Baek, Sangyeop, Kang, Hoyong, Koo, Kyo Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The correct diagnosis of uric acid (UA) stones has important clinical implications since patients with a high risk of perioperative morbidity may be spared surgical intervention and be offered alkalization therapy. We developed and validated a machine learning (ML)-based model to identify stones on computed tomography (CT) images and simultaneously classify UA stones from non-UA stones. An international, multicenter study was performed on 202 patients who received percutaneous nephrolithotomy for kidney stones with HU 
ISSN:2194-7236
2194-7228
2194-7236
DOI:10.1007/s00240-023-01490-y