On the CO$$_{2}$$ adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study

CONTEXTRecent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2023-10, Vol.29 (10), p.327-327, Article 327
Hauptverfasser: Santos, Emanuel J. A., Giozza, William F., de Souza Júnior, Rafael T., Nepomuceno Cavalcante, Neymar J., Ribeiro Júnior, Luiz A., Lopes Lima, Kleuton A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 10
container_start_page 327
container_title Journal of molecular modeling
container_volume 29
creator Santos, Emanuel J. A.
Giozza, William F.
de Souza Júnior, Rafael T.
Nepomuceno Cavalcante, Neymar J.
Ribeiro Júnior, Luiz A.
Lopes Lima, Kleuton A.
description CONTEXTRecent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO[Formula: see text] adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO[Formula: see text] molecules, approximately [Formula: see text]0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO[Formula: see text] adsorption, leading to adsorption energies ranging from [Formula: see text]0.13 to [Formula: see text]0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO[Formula: see text] sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO[Formula: see text] molecules suggests that the interaction between BN-BPN and CO[Formula: see text] cannot modify the electronic properties of BN-BPN before the CO[Formula: see text] molecules escape. METHODSWe performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.
doi_str_mv 10.1007/s00894-023-05709-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870994938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2870994938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768-fcf3af6592609457ae42a81fe7c49662319679d360813af185d9fa4f2e38172e3</originalsourceid><addsrcrecordid>eNotkD9PwzAQxS0EElXpF2Dy0IElYDuJY7Oh8leq1KW75SZnakjtYLtCAfHdMS3L3b3TuyfdD6FLSq4pIc1NJETIqiCsLEjdEFmMJ2hCZCWKOu9O0YRySgomK3KOZjG-EUIoq3nN2ASllcNpC3ixms_VN_uZz7Huog9Dst5h67DGGx_y6GwKtgOsne79KzY-HO4CtOBSP-I4uqyj_YIOb-ywBTf24AA7SJ8-vN_moPvHNY5p340X6MzoPsLsv0_R-vFhvXgulqunl8XdsmgbLgrTmlIbXkvG8zN1o6FiWlADTVtJzllJJW9kV3IiaDZSUXfS6MowKAVtcp2iq2PsEPzHHmJSOxtb6HvtwO-jYiLDkpUsRbayo7UNPsYARg3B7nQYFSXqD7I6QlYZqDpAVmP5C_FXbx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870994938</pqid></control><display><type>article</type><title>On the CO$$_{2}$$ adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study</title><source>SpringerNature Journals</source><creator>Santos, Emanuel J. A. ; Giozza, William F. ; de Souza Júnior, Rafael T. ; Nepomuceno Cavalcante, Neymar J. ; Ribeiro Júnior, Luiz A. ; Lopes Lima, Kleuton A.</creator><creatorcontrib>Santos, Emanuel J. A. ; Giozza, William F. ; de Souza Júnior, Rafael T. ; Nepomuceno Cavalcante, Neymar J. ; Ribeiro Júnior, Luiz A. ; Lopes Lima, Kleuton A.</creatorcontrib><description>CONTEXTRecent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO[Formula: see text] adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO[Formula: see text] molecules, approximately [Formula: see text]0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO[Formula: see text] adsorption, leading to adsorption energies ranging from [Formula: see text]0.13 to [Formula: see text]0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO[Formula: see text] sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO[Formula: see text] molecules suggests that the interaction between BN-BPN and CO[Formula: see text] cannot modify the electronic properties of BN-BPN before the CO[Formula: see text] molecules escape. METHODSWe performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-023-05709-y</identifier><language>eng</language><ispartof>Journal of molecular modeling, 2023-10, Vol.29 (10), p.327-327, Article 327</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c768-fcf3af6592609457ae42a81fe7c49662319679d360813af185d9fa4f2e38172e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Santos, Emanuel J. A.</creatorcontrib><creatorcontrib>Giozza, William F.</creatorcontrib><creatorcontrib>de Souza Júnior, Rafael T.</creatorcontrib><creatorcontrib>Nepomuceno Cavalcante, Neymar J.</creatorcontrib><creatorcontrib>Ribeiro Júnior, Luiz A.</creatorcontrib><creatorcontrib>Lopes Lima, Kleuton A.</creatorcontrib><title>On the CO$$_{2}$$ adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study</title><title>Journal of molecular modeling</title><description>CONTEXTRecent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO[Formula: see text] adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO[Formula: see text] molecules, approximately [Formula: see text]0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO[Formula: see text] adsorption, leading to adsorption energies ranging from [Formula: see text]0.13 to [Formula: see text]0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO[Formula: see text] sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO[Formula: see text] molecules suggests that the interaction between BN-BPN and CO[Formula: see text] cannot modify the electronic properties of BN-BPN before the CO[Formula: see text] molecules escape. METHODSWe performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.</description><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkD9PwzAQxS0EElXpF2Dy0IElYDuJY7Oh8leq1KW75SZnakjtYLtCAfHdMS3L3b3TuyfdD6FLSq4pIc1NJETIqiCsLEjdEFmMJ2hCZCWKOu9O0YRySgomK3KOZjG-EUIoq3nN2ASllcNpC3ixms_VN_uZz7Huog9Dst5h67DGGx_y6GwKtgOsne79KzY-HO4CtOBSP-I4uqyj_YIOb-ywBTf24AA7SJ8-vN_moPvHNY5p340X6MzoPsLsv0_R-vFhvXgulqunl8XdsmgbLgrTmlIbXkvG8zN1o6FiWlADTVtJzllJJW9kV3IiaDZSUXfS6MowKAVtcp2iq2PsEPzHHmJSOxtb6HvtwO-jYiLDkpUsRbayo7UNPsYARg3B7nQYFSXqD7I6QlYZqDpAVmP5C_FXbx8</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Santos, Emanuel J. A.</creator><creator>Giozza, William F.</creator><creator>de Souza Júnior, Rafael T.</creator><creator>Nepomuceno Cavalcante, Neymar J.</creator><creator>Ribeiro Júnior, Luiz A.</creator><creator>Lopes Lima, Kleuton A.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202310</creationdate><title>On the CO$$_{2}$$ adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study</title><author>Santos, Emanuel J. A. ; Giozza, William F. ; de Souza Júnior, Rafael T. ; Nepomuceno Cavalcante, Neymar J. ; Ribeiro Júnior, Luiz A. ; Lopes Lima, Kleuton A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768-fcf3af6592609457ae42a81fe7c49662319679d360813af185d9fa4f2e38172e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Emanuel J. A.</creatorcontrib><creatorcontrib>Giozza, William F.</creatorcontrib><creatorcontrib>de Souza Júnior, Rafael T.</creatorcontrib><creatorcontrib>Nepomuceno Cavalcante, Neymar J.</creatorcontrib><creatorcontrib>Ribeiro Júnior, Luiz A.</creatorcontrib><creatorcontrib>Lopes Lima, Kleuton A.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Emanuel J. A.</au><au>Giozza, William F.</au><au>de Souza Júnior, Rafael T.</au><au>Nepomuceno Cavalcante, Neymar J.</au><au>Ribeiro Júnior, Luiz A.</au><au>Lopes Lima, Kleuton A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the CO$$_{2}$$ adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study</atitle><jtitle>Journal of molecular modeling</jtitle><date>2023-10</date><risdate>2023</risdate><volume>29</volume><issue>10</issue><spage>327</spage><epage>327</epage><pages>327-327</pages><artnum>327</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>CONTEXTRecent advances in nanomaterial synthesis and characterization have led to exploring novel 2D materials. The biphenylene network (BPN) is a notable achievement in current fabrication efforts. Numerical studies have indicated the stability of its boron nitride counterpart, known as BN-BPN. In this study, we employ computational simulations to investigate the electronic and structural properties of pristine and doped BN-BPN monolayers upon CO[Formula: see text] adsorption. Our findings demonstrate that pristine BN-BPN layers exhibit moderate adsorption energies for CO[Formula: see text] molecules, approximately [Formula: see text]0.16 eV, indicating physisorption. However, introducing one-atom doping with silver, germanium, nickel, palladium, platinum, or silicon significantly enhances CO[Formula: see text] adsorption, leading to adsorption energies ranging from [Formula: see text]0.13 to [Formula: see text]0.65 eV. This enhancement indicates the presence of both physisorption and chemisorption mechanisms. BN-BPN does not show precise CO[Formula: see text] sensing and selectivity. Furthermore, our investigation of the recovery time for adsorbed CO[Formula: see text] molecules suggests that the interaction between BN-BPN and CO[Formula: see text] cannot modify the electronic properties of BN-BPN before the CO[Formula: see text] molecules escape. METHODSWe performed density functional theory (DFT) simulations using the DMol3 code in the Biovia Materials Studio software. We incorporated Van der Waals corrections (DFT-D) within the Grimme scheme for an accurate representation. The exchange and correlation functions were treated using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). We used a double-zeta plus polarization (DZP) basis set to describe the electronic structure. Additionally, we accounted for the basis set superposition error (BSSE) through the counterpoise method. We included semicore DFT pseudopotentials to accurately model the interactions between the nuclei and valence electrons.</abstract><doi>10.1007/s00894-023-05709-y</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2023-10, Vol.29 (10), p.327-327, Article 327
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2870994938
source SpringerNature Journals
title On the CO$$_{2}$$ adsorption in a boron nitride analog for the recently synthesized biphenylene network: a DFT study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20CO$$_%7B2%7D$$%20adsorption%20in%20a%20boron%20nitride%20analog%20for%20the%20recently%20synthesized%20biphenylene%20network:%20a%20DFT%20study&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Santos,%20Emanuel%20J.%20A.&rft.date=2023-10&rft.volume=29&rft.issue=10&rft.spage=327&rft.epage=327&rft.pages=327-327&rft.artnum=327&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-023-05709-y&rft_dat=%3Cproquest_cross%3E2870994938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870994938&rft_id=info:pmid/&rfr_iscdi=true