Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue

Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-12, Vol.12 (32), p.e2301687-n/a
Hauptverfasser: Zhong, Zifu, Chen, Yong, Deswarte, Kim, Lauwers, Heleen, De Lombaerde, Emily, Cui, Xiaole, Van Herck, Simon, Ye, Tingting, Gontsarik, Mark, Lienenklaus, Stefan, Sanders, Niek N., Lambrecht, Bart N., De Koker, Stefaan, De Geest, Bruno G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2301687
container_title Advanced healthcare materials
container_volume 12
creator Zhong, Zifu
Chen, Yong
Deswarte, Kim
Lauwers, Heleen
De Lombaerde, Emily
Cui, Xiaole
Van Herck, Simon
Ye, Tingting
Gontsarik, Mark
Lienenklaus, Stefan
Sanders, Niek N.
Lambrecht, Bart N.
De Koker, Stefaan
De Geest, Bruno G.
description Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG. This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.
doi_str_mv 10.1002/adhm.202301687
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870994090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906617365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</originalsourceid><addsrcrecordid>eNqF0U-L1DAcBuAgiruse_UoAS9eZsyfpmmOZXbdHagKMp5DmqZOhjapSTpS_PJmd3ZH8GIuCeH5vQm8ALzFaI0RIh9Vtx_XBBGKcFnxF-CSYEFWpGTi5flcoAtwHeMB5VWy7PBrcEE556Sk_BL8buxkO_hFOT-pkKweDLwxgz2asMB6SCZEmPYG1t1hPiqXgU0L9P3j5a75JmD9wzsbE9xMd7Bd4NY5lQzcjuPs8phO9qiS9Q5aB5tlnPY-P7ezMc7mDXjVqyGa66f9Cnz_dLvb3K-ar3fbTd2sdIEpX6kSI85Y0RVMVBoxbkwvOky1oB1jpGhZxRTuq1bhou2ZppUpNNKq7LGuCm3oFfhwyp2C_zmbmORoozbDoJzxc5Sk4kiIAgmU6ft_6MHPweXfSSJQWWJOS5bV-qR08DEG08sp2FGFRWIkH5qRD83IczN54N1T7NyOpjvz5x4yECfwyw5m-U-crG_uP_8N_wNWf5nN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906617365</pqid></control><display><type>article</type><title>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</title><source>Access via Wiley Online Library</source><creator>Zhong, Zifu ; Chen, Yong ; Deswarte, Kim ; Lauwers, Heleen ; De Lombaerde, Emily ; Cui, Xiaole ; Van Herck, Simon ; Ye, Tingting ; Gontsarik, Mark ; Lienenklaus, Stefan ; Sanders, Niek N. ; Lambrecht, Bart N. ; De Koker, Stefaan ; De Geest, Bruno G.</creator><creatorcontrib>Zhong, Zifu ; Chen, Yong ; Deswarte, Kim ; Lauwers, Heleen ; De Lombaerde, Emily ; Cui, Xiaole ; Van Herck, Simon ; Ye, Tingting ; Gontsarik, Mark ; Lienenklaus, Stefan ; Sanders, Niek N. ; Lambrecht, Bart N. ; De Koker, Stefaan ; De Geest, Bruno G.</creatorcontrib><description>Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG. This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202301687</identifier><identifier>PMID: 37772637</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adjuvanticity ; Antibodies ; Antigens ; Cancer immunotherapy ; Cancer vaccines ; Context ; CpG islands ; CpG ODN ; Electrostatic properties ; Immune system ; immune therapy ; Innate immunity ; lipid nanoparticles ; Lipids ; Lymph nodes ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; Lymphoid tissue ; Nanoparticles ; Oligonucleotides ; Phosphorothioate ; Robustness ; Signal transduction ; TLR9 ; TLR9 protein ; Toll-like receptors ; Toxicity ; vaccine adjuvants ; Vaccines</subject><ispartof>Advanced healthcare materials, 2023-12, Vol.12 (32), p.e2301687-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</citedby><cites>FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</cites><orcidid>0000-0001-9826-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202301687$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202301687$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37772637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Zifu</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Deswarte, Kim</creatorcontrib><creatorcontrib>Lauwers, Heleen</creatorcontrib><creatorcontrib>De Lombaerde, Emily</creatorcontrib><creatorcontrib>Cui, Xiaole</creatorcontrib><creatorcontrib>Van Herck, Simon</creatorcontrib><creatorcontrib>Ye, Tingting</creatorcontrib><creatorcontrib>Gontsarik, Mark</creatorcontrib><creatorcontrib>Lienenklaus, Stefan</creatorcontrib><creatorcontrib>Sanders, Niek N.</creatorcontrib><creatorcontrib>Lambrecht, Bart N.</creatorcontrib><creatorcontrib>De Koker, Stefaan</creatorcontrib><creatorcontrib>De Geest, Bruno G.</creatorcontrib><title>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG. This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.</description><subject>Adjuvanticity</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Cancer immunotherapy</subject><subject>Cancer vaccines</subject><subject>Context</subject><subject>CpG islands</subject><subject>CpG ODN</subject><subject>Electrostatic properties</subject><subject>Immune system</subject><subject>immune therapy</subject><subject>Innate immunity</subject><subject>lipid nanoparticles</subject><subject>Lipids</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphoid tissue</subject><subject>Nanoparticles</subject><subject>Oligonucleotides</subject><subject>Phosphorothioate</subject><subject>Robustness</subject><subject>Signal transduction</subject><subject>TLR9</subject><subject>TLR9 protein</subject><subject>Toll-like receptors</subject><subject>Toxicity</subject><subject>vaccine adjuvants</subject><subject>Vaccines</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0U-L1DAcBuAgiruse_UoAS9eZsyfpmmOZXbdHagKMp5DmqZOhjapSTpS_PJmd3ZH8GIuCeH5vQm8ALzFaI0RIh9Vtx_XBBGKcFnxF-CSYEFWpGTi5flcoAtwHeMB5VWy7PBrcEE556Sk_BL8buxkO_hFOT-pkKweDLwxgz2asMB6SCZEmPYG1t1hPiqXgU0L9P3j5a75JmD9wzsbE9xMd7Bd4NY5lQzcjuPs8phO9qiS9Q5aB5tlnPY-P7ezMc7mDXjVqyGa66f9Cnz_dLvb3K-ar3fbTd2sdIEpX6kSI85Y0RVMVBoxbkwvOky1oB1jpGhZxRTuq1bhou2ZppUpNNKq7LGuCm3oFfhwyp2C_zmbmORoozbDoJzxc5Sk4kiIAgmU6ft_6MHPweXfSSJQWWJOS5bV-qR08DEG08sp2FGFRWIkH5qRD83IczN54N1T7NyOpjvz5x4yECfwyw5m-U-crG_uP_8N_wNWf5nN</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhong, Zifu</creator><creator>Chen, Yong</creator><creator>Deswarte, Kim</creator><creator>Lauwers, Heleen</creator><creator>De Lombaerde, Emily</creator><creator>Cui, Xiaole</creator><creator>Van Herck, Simon</creator><creator>Ye, Tingting</creator><creator>Gontsarik, Mark</creator><creator>Lienenklaus, Stefan</creator><creator>Sanders, Niek N.</creator><creator>Lambrecht, Bart N.</creator><creator>De Koker, Stefaan</creator><creator>De Geest, Bruno G.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9826-6170</orcidid></search><sort><creationdate>20231201</creationdate><title>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</title><author>Zhong, Zifu ; Chen, Yong ; Deswarte, Kim ; Lauwers, Heleen ; De Lombaerde, Emily ; Cui, Xiaole ; Van Herck, Simon ; Ye, Tingting ; Gontsarik, Mark ; Lienenklaus, Stefan ; Sanders, Niek N. ; Lambrecht, Bart N. ; De Koker, Stefaan ; De Geest, Bruno G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adjuvanticity</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Cancer immunotherapy</topic><topic>Cancer vaccines</topic><topic>Context</topic><topic>CpG islands</topic><topic>CpG ODN</topic><topic>Electrostatic properties</topic><topic>Immune system</topic><topic>immune therapy</topic><topic>Innate immunity</topic><topic>lipid nanoparticles</topic><topic>Lipids</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphoid tissue</topic><topic>Nanoparticles</topic><topic>Oligonucleotides</topic><topic>Phosphorothioate</topic><topic>Robustness</topic><topic>Signal transduction</topic><topic>TLR9</topic><topic>TLR9 protein</topic><topic>Toll-like receptors</topic><topic>Toxicity</topic><topic>vaccine adjuvants</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zifu</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Deswarte, Kim</creatorcontrib><creatorcontrib>Lauwers, Heleen</creatorcontrib><creatorcontrib>De Lombaerde, Emily</creatorcontrib><creatorcontrib>Cui, Xiaole</creatorcontrib><creatorcontrib>Van Herck, Simon</creatorcontrib><creatorcontrib>Ye, Tingting</creatorcontrib><creatorcontrib>Gontsarik, Mark</creatorcontrib><creatorcontrib>Lienenklaus, Stefan</creatorcontrib><creatorcontrib>Sanders, Niek N.</creatorcontrib><creatorcontrib>Lambrecht, Bart N.</creatorcontrib><creatorcontrib>De Koker, Stefaan</creatorcontrib><creatorcontrib>De Geest, Bruno G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Zifu</au><au>Chen, Yong</au><au>Deswarte, Kim</au><au>Lauwers, Heleen</au><au>De Lombaerde, Emily</au><au>Cui, Xiaole</au><au>Van Herck, Simon</au><au>Ye, Tingting</au><au>Gontsarik, Mark</au><au>Lienenklaus, Stefan</au><au>Sanders, Niek N.</au><au>Lambrecht, Bart N.</au><au>De Koker, Stefaan</au><au>De Geest, Bruno G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>12</volume><issue>32</issue><spage>e2301687</spage><epage>n/a</epage><pages>e2301687-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG. This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37772637</pmid><doi>10.1002/adhm.202301687</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9826-6170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-12, Vol.12 (32), p.e2301687-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2870994090
source Access via Wiley Online Library
subjects Adjuvanticity
Antibodies
Antigens
Cancer immunotherapy
Cancer vaccines
Context
CpG islands
CpG ODN
Electrostatic properties
Immune system
immune therapy
Innate immunity
lipid nanoparticles
Lipids
Lymph nodes
Lymphatic system
Lymphocytes
Lymphocytes T
Lymphoid tissue
Nanoparticles
Oligonucleotides
Phosphorothioate
Robustness
Signal transduction
TLR9
TLR9 protein
Toll-like receptors
Toxicity
vaccine adjuvants
Vaccines
title Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20Nanoparticle%20Delivery%20Alters%20the%20Adjuvanticity%20of%20the%20TLR9%20Agonist%20CpG%20by%20Innate%20Immune%20Activation%20in%20Lymphoid%20Tissue&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Zhong,%20Zifu&rft.date=2023-12-01&rft.volume=12&rft.issue=32&rft.spage=e2301687&rft.epage=n/a&rft.pages=e2301687-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202301687&rft_dat=%3Cproquest_cross%3E2906617365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906617365&rft_id=info:pmid/37772637&rfr_iscdi=true