Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue
Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2023-12, Vol.12 (32), p.e2301687-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e2301687 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Zhong, Zifu Chen, Yong Deswarte, Kim Lauwers, Heleen De Lombaerde, Emily Cui, Xiaole Van Herck, Simon Ye, Tingting Gontsarik, Mark Lienenklaus, Stefan Sanders, Niek N. Lambrecht, Bart N. De Koker, Stefaan De Geest, Bruno G. |
description | Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG.
This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy. |
doi_str_mv | 10.1002/adhm.202301687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870994090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906617365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</originalsourceid><addsrcrecordid>eNqF0U-L1DAcBuAgiruse_UoAS9eZsyfpmmOZXbdHagKMp5DmqZOhjapSTpS_PJmd3ZH8GIuCeH5vQm8ALzFaI0RIh9Vtx_XBBGKcFnxF-CSYEFWpGTi5flcoAtwHeMB5VWy7PBrcEE556Sk_BL8buxkO_hFOT-pkKweDLwxgz2asMB6SCZEmPYG1t1hPiqXgU0L9P3j5a75JmD9wzsbE9xMd7Bd4NY5lQzcjuPs8phO9qiS9Q5aB5tlnPY-P7ezMc7mDXjVqyGa66f9Cnz_dLvb3K-ar3fbTd2sdIEpX6kSI85Y0RVMVBoxbkwvOky1oB1jpGhZxRTuq1bhou2ZppUpNNKq7LGuCm3oFfhwyp2C_zmbmORoozbDoJzxc5Sk4kiIAgmU6ft_6MHPweXfSSJQWWJOS5bV-qR08DEG08sp2FGFRWIkH5qRD83IczN54N1T7NyOpjvz5x4yECfwyw5m-U-crG_uP_8N_wNWf5nN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906617365</pqid></control><display><type>article</type><title>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</title><source>Access via Wiley Online Library</source><creator>Zhong, Zifu ; Chen, Yong ; Deswarte, Kim ; Lauwers, Heleen ; De Lombaerde, Emily ; Cui, Xiaole ; Van Herck, Simon ; Ye, Tingting ; Gontsarik, Mark ; Lienenklaus, Stefan ; Sanders, Niek N. ; Lambrecht, Bart N. ; De Koker, Stefaan ; De Geest, Bruno G.</creator><creatorcontrib>Zhong, Zifu ; Chen, Yong ; Deswarte, Kim ; Lauwers, Heleen ; De Lombaerde, Emily ; Cui, Xiaole ; Van Herck, Simon ; Ye, Tingting ; Gontsarik, Mark ; Lienenklaus, Stefan ; Sanders, Niek N. ; Lambrecht, Bart N. ; De Koker, Stefaan ; De Geest, Bruno G.</creatorcontrib><description>Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG.
This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202301687</identifier><identifier>PMID: 37772637</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adjuvanticity ; Antibodies ; Antigens ; Cancer immunotherapy ; Cancer vaccines ; Context ; CpG islands ; CpG ODN ; Electrostatic properties ; Immune system ; immune therapy ; Innate immunity ; lipid nanoparticles ; Lipids ; Lymph nodes ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; Lymphoid tissue ; Nanoparticles ; Oligonucleotides ; Phosphorothioate ; Robustness ; Signal transduction ; TLR9 ; TLR9 protein ; Toll-like receptors ; Toxicity ; vaccine adjuvants ; Vaccines</subject><ispartof>Advanced healthcare materials, 2023-12, Vol.12 (32), p.e2301687-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</citedby><cites>FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</cites><orcidid>0000-0001-9826-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202301687$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202301687$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37772637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Zifu</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Deswarte, Kim</creatorcontrib><creatorcontrib>Lauwers, Heleen</creatorcontrib><creatorcontrib>De Lombaerde, Emily</creatorcontrib><creatorcontrib>Cui, Xiaole</creatorcontrib><creatorcontrib>Van Herck, Simon</creatorcontrib><creatorcontrib>Ye, Tingting</creatorcontrib><creatorcontrib>Gontsarik, Mark</creatorcontrib><creatorcontrib>Lienenklaus, Stefan</creatorcontrib><creatorcontrib>Sanders, Niek N.</creatorcontrib><creatorcontrib>Lambrecht, Bart N.</creatorcontrib><creatorcontrib>De Koker, Stefaan</creatorcontrib><creatorcontrib>De Geest, Bruno G.</creatorcontrib><title>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG.
This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.</description><subject>Adjuvanticity</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>Cancer immunotherapy</subject><subject>Cancer vaccines</subject><subject>Context</subject><subject>CpG islands</subject><subject>CpG ODN</subject><subject>Electrostatic properties</subject><subject>Immune system</subject><subject>immune therapy</subject><subject>Innate immunity</subject><subject>lipid nanoparticles</subject><subject>Lipids</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Lymphoid tissue</subject><subject>Nanoparticles</subject><subject>Oligonucleotides</subject><subject>Phosphorothioate</subject><subject>Robustness</subject><subject>Signal transduction</subject><subject>TLR9</subject><subject>TLR9 protein</subject><subject>Toll-like receptors</subject><subject>Toxicity</subject><subject>vaccine adjuvants</subject><subject>Vaccines</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0U-L1DAcBuAgiruse_UoAS9eZsyfpmmOZXbdHagKMp5DmqZOhjapSTpS_PJmd3ZH8GIuCeH5vQm8ALzFaI0RIh9Vtx_XBBGKcFnxF-CSYEFWpGTi5flcoAtwHeMB5VWy7PBrcEE556Sk_BL8buxkO_hFOT-pkKweDLwxgz2asMB6SCZEmPYG1t1hPiqXgU0L9P3j5a75JmD9wzsbE9xMd7Bd4NY5lQzcjuPs8phO9qiS9Q5aB5tlnPY-P7ezMc7mDXjVqyGa66f9Cnz_dLvb3K-ar3fbTd2sdIEpX6kSI85Y0RVMVBoxbkwvOky1oB1jpGhZxRTuq1bhou2ZppUpNNKq7LGuCm3oFfhwyp2C_zmbmORoozbDoJzxc5Sk4kiIAgmU6ft_6MHPweXfSSJQWWJOS5bV-qR08DEG08sp2FGFRWIkH5qRD83IczN54N1T7NyOpjvz5x4yECfwyw5m-U-crG_uP_8N_wNWf5nN</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhong, Zifu</creator><creator>Chen, Yong</creator><creator>Deswarte, Kim</creator><creator>Lauwers, Heleen</creator><creator>De Lombaerde, Emily</creator><creator>Cui, Xiaole</creator><creator>Van Herck, Simon</creator><creator>Ye, Tingting</creator><creator>Gontsarik, Mark</creator><creator>Lienenklaus, Stefan</creator><creator>Sanders, Niek N.</creator><creator>Lambrecht, Bart N.</creator><creator>De Koker, Stefaan</creator><creator>De Geest, Bruno G.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9826-6170</orcidid></search><sort><creationdate>20231201</creationdate><title>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</title><author>Zhong, Zifu ; Chen, Yong ; Deswarte, Kim ; Lauwers, Heleen ; De Lombaerde, Emily ; Cui, Xiaole ; Van Herck, Simon ; Ye, Tingting ; Gontsarik, Mark ; Lienenklaus, Stefan ; Sanders, Niek N. ; Lambrecht, Bart N. ; De Koker, Stefaan ; De Geest, Bruno G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-a6107554d4598c057eef9d13c93d5524b585a1f8ba14bf5c38e4c0ca6f1c84ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adjuvanticity</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>Cancer immunotherapy</topic><topic>Cancer vaccines</topic><topic>Context</topic><topic>CpG islands</topic><topic>CpG ODN</topic><topic>Electrostatic properties</topic><topic>Immune system</topic><topic>immune therapy</topic><topic>Innate immunity</topic><topic>lipid nanoparticles</topic><topic>Lipids</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Lymphoid tissue</topic><topic>Nanoparticles</topic><topic>Oligonucleotides</topic><topic>Phosphorothioate</topic><topic>Robustness</topic><topic>Signal transduction</topic><topic>TLR9</topic><topic>TLR9 protein</topic><topic>Toll-like receptors</topic><topic>Toxicity</topic><topic>vaccine adjuvants</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zifu</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Deswarte, Kim</creatorcontrib><creatorcontrib>Lauwers, Heleen</creatorcontrib><creatorcontrib>De Lombaerde, Emily</creatorcontrib><creatorcontrib>Cui, Xiaole</creatorcontrib><creatorcontrib>Van Herck, Simon</creatorcontrib><creatorcontrib>Ye, Tingting</creatorcontrib><creatorcontrib>Gontsarik, Mark</creatorcontrib><creatorcontrib>Lienenklaus, Stefan</creatorcontrib><creatorcontrib>Sanders, Niek N.</creatorcontrib><creatorcontrib>Lambrecht, Bart N.</creatorcontrib><creatorcontrib>De Koker, Stefaan</creatorcontrib><creatorcontrib>De Geest, Bruno G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Zifu</au><au>Chen, Yong</au><au>Deswarte, Kim</au><au>Lauwers, Heleen</au><au>De Lombaerde, Emily</au><au>Cui, Xiaole</au><au>Van Herck, Simon</au><au>Ye, Tingting</au><au>Gontsarik, Mark</au><au>Lienenklaus, Stefan</au><au>Sanders, Niek N.</au><au>Lambrecht, Bart N.</au><au>De Koker, Stefaan</au><au>De Geest, Bruno G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>12</volume><issue>32</issue><spage>e2301687</spage><epage>n/a</epage><pages>e2301687-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Pharmacological strategies to activate innate immune cells are of great relevance in the context of vaccine design and anticancer immune therapy, to mount broad immune responses able to clear infection and malignant cells. Synthetic CpG oligodeoxynucleotides (CpG‐ODNs) are short single‐stranded DNA molecules containing unmethylated CpG dinucleotides and a phosphorothioate backbone. Class B CpG ODNs activate robust innate immune responses through a TLR9‐dependent NF‐κB signaling pathway. This feature is attractive to exploit in the context of vaccine design and cancer immunotherapy. Soluble CpG‐ODNs cause hepatic toxicity, which reduces its therapeutic applicability. The formulation of class B CpG ODN1826 in lipid nanoparticles (LNPs) containing an ionizable cationic lipid that complexes CpG through electrostatic interaction is reported. Upon local administration, LNP‐formulated CpG drains to lymph nodes and triggers robust innate immune activation. Unformulated, soluble, CpG, by contrast, is unable to induce robust innate activation in draining lymph nodes and is distributed systemically. In a vaccination setting, LNP‐formulated CpG, admixed with a protein antigen, induces higher antigen‐specific antibody titers and T cell responses than antigen admixed with unformulated soluble CpG.
This study explores the encapsulation of Class B CpG ODN1826 in lipid nanoparticles to mitigate systemic toxicity and enhance immune response. The formulated CpG, localized to lymph nodes, triggers robust innate immune activation, outperforming unformulated counterparts in vaccine settings by inducing elevated antigen‐specific antibody titers and T cell responses, thus demonstrating significant potential in vaccine design and cancer immunotherapy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37772637</pmid><doi>10.1002/adhm.202301687</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9826-6170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-12, Vol.12 (32), p.e2301687-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_proquest_miscellaneous_2870994090 |
source | Access via Wiley Online Library |
subjects | Adjuvanticity Antibodies Antigens Cancer immunotherapy Cancer vaccines Context CpG islands CpG ODN Electrostatic properties Immune system immune therapy Innate immunity lipid nanoparticles Lipids Lymph nodes Lymphatic system Lymphocytes Lymphocytes T Lymphoid tissue Nanoparticles Oligonucleotides Phosphorothioate Robustness Signal transduction TLR9 TLR9 protein Toll-like receptors Toxicity vaccine adjuvants Vaccines |
title | Lipid Nanoparticle Delivery Alters the Adjuvanticity of the TLR9 Agonist CpG by Innate Immune Activation in Lymphoid Tissue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20Nanoparticle%20Delivery%20Alters%20the%20Adjuvanticity%20of%20the%20TLR9%20Agonist%20CpG%20by%20Innate%20Immune%20Activation%20in%20Lymphoid%20Tissue&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Zhong,%20Zifu&rft.date=2023-12-01&rft.volume=12&rft.issue=32&rft.spage=e2301687&rft.epage=n/a&rft.pages=e2301687-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202301687&rft_dat=%3Cproquest_cross%3E2906617365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906617365&rft_id=info:pmid/37772637&rfr_iscdi=true |