Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris
Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris . To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in C...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2023-12, Vol.107 (24), p.7403-7416 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7416 |
---|---|
container_issue | 24 |
container_start_page | 7403 |
container_title | Applied microbiology and biotechnology |
container_volume | 107 |
creator | Zhao, Bingjie Zhang, Yong Zhang, Sasa Hu, Ting Guo, Yanbin |
description | Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in
Cordyceps militaris
. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in
C. militaris
mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and
cns1-3
in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in
C. militaris
mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism.
Key points
• Cordycepin production in the CCD
max
group was 5.2-fold than that of the control.
•
Glucose uptake of the CCD
max
group was accelerated and cell wall was damaged.
•
The metabolic flux was concentrated to the cordycepin synthesis pathway.
Graphical abstract |
doi_str_mv | 10.1007/s00253-023-12792-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870989679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773284266</galeid><sourcerecordid>A773284266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-a8d69634756327b74c5fcffb2f9568637ba815b176834c8251f0868371e331203</originalsourceid><addsrcrecordid>eNqFklmLFDEUhQtRsB39Az4FfFHoGrNUlnocGpeBEcHlOaTSN02GVNKTpKD735uxB4YWUXIh23cO3MvputcEXxKM5fuCMeWsx5T1hMqR9ocn3YoMjPZYkOFpt8JE8l7yUT3vXpRyizGhSohVd_dlCdU7Y2vK3gTkY4Xcbj5FlBwqECD6ZV4jn1Nco8MxpAJrZOIW7cLR-giokTbl7dHC3kc0QzVTCr7MzQttHj4Kmn3w1WRfXnbPnAkFXj3sF93Pjx9-bD73N18_XW-ubno7MFl7o7ZiFGyQXDAqJzlY7qxzE3UjF0owORlF-ESkUGywinLisGpnSYAxQjG76N6efPc53S1Qqp59sRCCiZCWohnhjHOmJPsvSpXEoxqFHBv65g_0Ni05tkYaNRLcCuNHamcCaB9dqm2o96b6SkpG1UCFaNTlX6i2tjB7myI4397PBO_OBI2pcKg7s5Sir79_O2fpibU5lZLB6X32s8lHTbC-z4w-ZUa3zOjfmdGHJmInUWlw3EF-7O4fql_Yv8G1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891091000</pqid></control><display><type>article</type><title>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Bingjie ; Zhang, Yong ; Zhang, Sasa ; Hu, Ting ; Guo, Yanbin</creator><creatorcontrib>Zhao, Bingjie ; Zhang, Yong ; Zhang, Sasa ; Hu, Ting ; Guo, Yanbin</creatorcontrib><description>Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in
Cordyceps militaris
. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in
C. militaris
mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and
cns1-3
in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in
C. militaris
mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism.
Key points
• Cordycepin production in the CCD
max
group was 5.2-fold than that of the control.
•
Glucose uptake of the CCD
max
group was accelerated and cell wall was damaged.
•
The metabolic flux was concentrated to the cordycepin synthesis pathway.
Graphical abstract</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-023-12792-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine ; Analysis ; Ascomycota ; ATP phosphoribosyltransferase ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; carbon ; Carbon sources ; Cell walls ; Cordycepin ; Cordyceps militaris ; Fermentation ; ferrous chloride ; Fungi ; Gene expression ; Glucose ; Glycine ; Glycolysis ; Hexokinase ; Histidine ; Identification and classification ; iron ; Iron chlorides ; Iron compounds ; Life Sciences ; Metabolic flux ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; Monosaccharides ; mycelium ; Nanoparticles ; nitrogen ; Nitrogen sources ; Nucleoside analogs ; Nucleosides ; Pentose ; Pentose phosphate pathway ; pentoses ; phosphates ; Phosphoribosyltransferase ; Properties ; Protein biosynthesis ; Selenite ; selenites ; Selenium ; Selenocysteine ; Selenomethionine ; Sugars ; Trace elements ; Xylose</subject><ispartof>Applied microbiology and biotechnology, 2023-12, Vol.107 (24), p.7403-7416</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c437t-a8d69634756327b74c5fcffb2f9568637ba815b176834c8251f0868371e331203</cites><orcidid>0000-0003-0134-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-023-12792-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-023-12792-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Zhao, Bingjie</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Zhang, Sasa</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Guo, Yanbin</creatorcontrib><title>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in
Cordyceps militaris
. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in
C. militaris
mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and
cns1-3
in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in
C. militaris
mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism.
Key points
• Cordycepin production in the CCD
max
group was 5.2-fold than that of the control.
•
Glucose uptake of the CCD
max
group was accelerated and cell wall was damaged.
•
The metabolic flux was concentrated to the cordycepin synthesis pathway.
Graphical abstract</description><subject>Adenosine</subject><subject>Analysis</subject><subject>Ascomycota</subject><subject>ATP phosphoribosyltransferase</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>carbon</subject><subject>Carbon sources</subject><subject>Cell walls</subject><subject>Cordycepin</subject><subject>Cordyceps militaris</subject><subject>Fermentation</subject><subject>ferrous chloride</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glycine</subject><subject>Glycolysis</subject><subject>Hexokinase</subject><subject>Histidine</subject><subject>Identification and classification</subject><subject>iron</subject><subject>Iron chlorides</subject><subject>Iron compounds</subject><subject>Life Sciences</subject><subject>Metabolic flux</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Monosaccharides</subject><subject>mycelium</subject><subject>Nanoparticles</subject><subject>nitrogen</subject><subject>Nitrogen sources</subject><subject>Nucleoside analogs</subject><subject>Nucleosides</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>pentoses</subject><subject>phosphates</subject><subject>Phosphoribosyltransferase</subject><subject>Properties</subject><subject>Protein biosynthesis</subject><subject>Selenite</subject><subject>selenites</subject><subject>Selenium</subject><subject>Selenocysteine</subject><subject>Selenomethionine</subject><subject>Sugars</subject><subject>Trace elements</subject><subject>Xylose</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFklmLFDEUhQtRsB39Az4FfFHoGrNUlnocGpeBEcHlOaTSN02GVNKTpKD735uxB4YWUXIh23cO3MvputcEXxKM5fuCMeWsx5T1hMqR9ocn3YoMjPZYkOFpt8JE8l7yUT3vXpRyizGhSohVd_dlCdU7Y2vK3gTkY4Xcbj5FlBwqECD6ZV4jn1Nco8MxpAJrZOIW7cLR-giokTbl7dHC3kc0QzVTCr7MzQttHj4Kmn3w1WRfXnbPnAkFXj3sF93Pjx9-bD73N18_XW-ubno7MFl7o7ZiFGyQXDAqJzlY7qxzE3UjF0owORlF-ESkUGywinLisGpnSYAxQjG76N6efPc53S1Qqp59sRCCiZCWohnhjHOmJPsvSpXEoxqFHBv65g_0Ni05tkYaNRLcCuNHamcCaB9dqm2o96b6SkpG1UCFaNTlX6i2tjB7myI4397PBO_OBI2pcKg7s5Sir79_O2fpibU5lZLB6X32s8lHTbC-z4w-ZUa3zOjfmdGHJmInUWlw3EF-7O4fql_Yv8G1</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhao, Bingjie</creator><creator>Zhang, Yong</creator><creator>Zhang, Sasa</creator><creator>Hu, Ting</creator><creator>Guo, Yanbin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0134-2849</orcidid></search><sort><creationdate>20231201</creationdate><title>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</title><author>Zhao, Bingjie ; Zhang, Yong ; Zhang, Sasa ; Hu, Ting ; Guo, Yanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-a8d69634756327b74c5fcffb2f9568637ba815b176834c8251f0868371e331203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine</topic><topic>Analysis</topic><topic>Ascomycota</topic><topic>ATP phosphoribosyltransferase</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>carbon</topic><topic>Carbon sources</topic><topic>Cell walls</topic><topic>Cordycepin</topic><topic>Cordyceps militaris</topic><topic>Fermentation</topic><topic>ferrous chloride</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glycine</topic><topic>Glycolysis</topic><topic>Hexokinase</topic><topic>Histidine</topic><topic>Identification and classification</topic><topic>iron</topic><topic>Iron chlorides</topic><topic>Iron compounds</topic><topic>Life Sciences</topic><topic>Metabolic flux</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Monosaccharides</topic><topic>mycelium</topic><topic>Nanoparticles</topic><topic>nitrogen</topic><topic>Nitrogen sources</topic><topic>Nucleoside analogs</topic><topic>Nucleosides</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>pentoses</topic><topic>phosphates</topic><topic>Phosphoribosyltransferase</topic><topic>Properties</topic><topic>Protein biosynthesis</topic><topic>Selenite</topic><topic>selenites</topic><topic>Selenium</topic><topic>Selenocysteine</topic><topic>Selenomethionine</topic><topic>Sugars</topic><topic>Trace elements</topic><topic>Xylose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bingjie</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Zhang, Sasa</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Guo, Yanbin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bingjie</au><au>Zhang, Yong</au><au>Zhang, Sasa</au><au>Hu, Ting</au><au>Guo, Yanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>107</volume><issue>24</issue><spage>7403</spage><epage>7416</epage><pages>7403-7416</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in
Cordyceps militaris
. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in
C. militaris
mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and
cns1-3
in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in
C. militaris
mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism.
Key points
• Cordycepin production in the CCD
max
group was 5.2-fold than that of the control.
•
Glucose uptake of the CCD
max
group was accelerated and cell wall was damaged.
•
The metabolic flux was concentrated to the cordycepin synthesis pathway.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00253-023-12792-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0134-2849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2023-12, Vol.107 (24), p.7403-7416 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2870989679 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adenosine Analysis Ascomycota ATP phosphoribosyltransferase Biomedical and Life Sciences Biosynthesis Biotechnological Products and Process Engineering Biotechnology carbon Carbon sources Cell walls Cordycepin Cordyceps militaris Fermentation ferrous chloride Fungi Gene expression Glucose Glycine Glycolysis Hexokinase Histidine Identification and classification iron Iron chlorides Iron compounds Life Sciences Metabolic flux Metabolism Microbial Genetics and Genomics Microbiology Monosaccharides mycelium Nanoparticles nitrogen Nitrogen sources Nucleoside analogs Nucleosides Pentose Pentose phosphate pathway pentoses phosphates Phosphoribosyltransferase Properties Protein biosynthesis Selenite selenites Selenium Selenocysteine Selenomethionine Sugars Trace elements Xylose |
title | Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifactorial%20interaction%20of%20selenium,%20iron,%20xylose,%20and%20glycine%20on%20cordycepin%20metabolism%20in%20Cordyceps%20militaris&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhao,%20Bingjie&rft.date=2023-12-01&rft.volume=107&rft.issue=24&rft.spage=7403&rft.epage=7416&rft.pages=7403-7416&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-023-12792-x&rft_dat=%3Cgale_proqu%3EA773284266%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891091000&rft_id=info:pmid/&rft_galeid=A773284266&rfr_iscdi=true |