Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris

Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris . To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2023-12, Vol.107 (24), p.7403-7416
Hauptverfasser: Zhao, Bingjie, Zhang, Yong, Zhang, Sasa, Hu, Ting, Guo, Yanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7416
container_issue 24
container_start_page 7403
container_title Applied microbiology and biotechnology
container_volume 107
creator Zhao, Bingjie
Zhang, Yong
Zhang, Sasa
Hu, Ting
Guo, Yanbin
description Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris . To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. Key points • Cordycepin production in the CCD max group was 5.2-fold than that of the control. •  Glucose uptake of the CCD max group was accelerated and cell wall was damaged. •  The metabolic flux was concentrated to the cordycepin synthesis pathway. Graphical abstract
doi_str_mv 10.1007/s00253-023-12792-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870989679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A773284266</galeid><sourcerecordid>A773284266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-a8d69634756327b74c5fcffb2f9568637ba815b176834c8251f0868371e331203</originalsourceid><addsrcrecordid>eNqFklmLFDEUhQtRsB39Az4FfFHoGrNUlnocGpeBEcHlOaTSN02GVNKTpKD735uxB4YWUXIh23cO3MvputcEXxKM5fuCMeWsx5T1hMqR9ocn3YoMjPZYkOFpt8JE8l7yUT3vXpRyizGhSohVd_dlCdU7Y2vK3gTkY4Xcbj5FlBwqECD6ZV4jn1Nco8MxpAJrZOIW7cLR-giokTbl7dHC3kc0QzVTCr7MzQttHj4Kmn3w1WRfXnbPnAkFXj3sF93Pjx9-bD73N18_XW-ubno7MFl7o7ZiFGyQXDAqJzlY7qxzE3UjF0owORlF-ESkUGywinLisGpnSYAxQjG76N6efPc53S1Qqp59sRCCiZCWohnhjHOmJPsvSpXEoxqFHBv65g_0Ni05tkYaNRLcCuNHamcCaB9dqm2o96b6SkpG1UCFaNTlX6i2tjB7myI4397PBO_OBI2pcKg7s5Sir79_O2fpibU5lZLB6X32s8lHTbC-z4w-ZUa3zOjfmdGHJmInUWlw3EF-7O4fql_Yv8G1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891091000</pqid></control><display><type>article</type><title>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Bingjie ; Zhang, Yong ; Zhang, Sasa ; Hu, Ting ; Guo, Yanbin</creator><creatorcontrib>Zhao, Bingjie ; Zhang, Yong ; Zhang, Sasa ; Hu, Ting ; Guo, Yanbin</creatorcontrib><description>Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris . To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. Key points • Cordycepin production in the CCD max group was 5.2-fold than that of the control. •  Glucose uptake of the CCD max group was accelerated and cell wall was damaged. •  The metabolic flux was concentrated to the cordycepin synthesis pathway. Graphical abstract</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-023-12792-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adenosine ; Analysis ; Ascomycota ; ATP phosphoribosyltransferase ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; carbon ; Carbon sources ; Cell walls ; Cordycepin ; Cordyceps militaris ; Fermentation ; ferrous chloride ; Fungi ; Gene expression ; Glucose ; Glycine ; Glycolysis ; Hexokinase ; Histidine ; Identification and classification ; iron ; Iron chlorides ; Iron compounds ; Life Sciences ; Metabolic flux ; Metabolism ; Microbial Genetics and Genomics ; Microbiology ; Monosaccharides ; mycelium ; Nanoparticles ; nitrogen ; Nitrogen sources ; Nucleoside analogs ; Nucleosides ; Pentose ; Pentose phosphate pathway ; pentoses ; phosphates ; Phosphoribosyltransferase ; Properties ; Protein biosynthesis ; Selenite ; selenites ; Selenium ; Selenocysteine ; Selenomethionine ; Sugars ; Trace elements ; Xylose</subject><ispartof>Applied microbiology and biotechnology, 2023-12, Vol.107 (24), p.7403-7416</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c437t-a8d69634756327b74c5fcffb2f9568637ba815b176834c8251f0868371e331203</cites><orcidid>0000-0003-0134-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-023-12792-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-023-12792-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27906,27907,41470,42539,51301</link.rule.ids></links><search><creatorcontrib>Zhao, Bingjie</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Zhang, Sasa</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Guo, Yanbin</creatorcontrib><title>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris . To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. Key points • Cordycepin production in the CCD max group was 5.2-fold than that of the control. •  Glucose uptake of the CCD max group was accelerated and cell wall was damaged. •  The metabolic flux was concentrated to the cordycepin synthesis pathway. Graphical abstract</description><subject>Adenosine</subject><subject>Analysis</subject><subject>Ascomycota</subject><subject>ATP phosphoribosyltransferase</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>carbon</subject><subject>Carbon sources</subject><subject>Cell walls</subject><subject>Cordycepin</subject><subject>Cordyceps militaris</subject><subject>Fermentation</subject><subject>ferrous chloride</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glycine</subject><subject>Glycolysis</subject><subject>Hexokinase</subject><subject>Histidine</subject><subject>Identification and classification</subject><subject>iron</subject><subject>Iron chlorides</subject><subject>Iron compounds</subject><subject>Life Sciences</subject><subject>Metabolic flux</subject><subject>Metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Monosaccharides</subject><subject>mycelium</subject><subject>Nanoparticles</subject><subject>nitrogen</subject><subject>Nitrogen sources</subject><subject>Nucleoside analogs</subject><subject>Nucleosides</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>pentoses</subject><subject>phosphates</subject><subject>Phosphoribosyltransferase</subject><subject>Properties</subject><subject>Protein biosynthesis</subject><subject>Selenite</subject><subject>selenites</subject><subject>Selenium</subject><subject>Selenocysteine</subject><subject>Selenomethionine</subject><subject>Sugars</subject><subject>Trace elements</subject><subject>Xylose</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFklmLFDEUhQtRsB39Az4FfFHoGrNUlnocGpeBEcHlOaTSN02GVNKTpKD735uxB4YWUXIh23cO3MvputcEXxKM5fuCMeWsx5T1hMqR9ocn3YoMjPZYkOFpt8JE8l7yUT3vXpRyizGhSohVd_dlCdU7Y2vK3gTkY4Xcbj5FlBwqECD6ZV4jn1Nco8MxpAJrZOIW7cLR-giokTbl7dHC3kc0QzVTCr7MzQttHj4Kmn3w1WRfXnbPnAkFXj3sF93Pjx9-bD73N18_XW-ubno7MFl7o7ZiFGyQXDAqJzlY7qxzE3UjF0owORlF-ESkUGywinLisGpnSYAxQjG76N6efPc53S1Qqp59sRCCiZCWohnhjHOmJPsvSpXEoxqFHBv65g_0Ni05tkYaNRLcCuNHamcCaB9dqm2o96b6SkpG1UCFaNTlX6i2tjB7myI4397PBO_OBI2pcKg7s5Sir79_O2fpibU5lZLB6X32s8lHTbC-z4w-ZUa3zOjfmdGHJmInUWlw3EF-7O4fql_Yv8G1</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zhao, Bingjie</creator><creator>Zhang, Yong</creator><creator>Zhang, Sasa</creator><creator>Hu, Ting</creator><creator>Guo, Yanbin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0134-2849</orcidid></search><sort><creationdate>20231201</creationdate><title>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</title><author>Zhao, Bingjie ; Zhang, Yong ; Zhang, Sasa ; Hu, Ting ; Guo, Yanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-a8d69634756327b74c5fcffb2f9568637ba815b176834c8251f0868371e331203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine</topic><topic>Analysis</topic><topic>Ascomycota</topic><topic>ATP phosphoribosyltransferase</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>carbon</topic><topic>Carbon sources</topic><topic>Cell walls</topic><topic>Cordycepin</topic><topic>Cordyceps militaris</topic><topic>Fermentation</topic><topic>ferrous chloride</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glycine</topic><topic>Glycolysis</topic><topic>Hexokinase</topic><topic>Histidine</topic><topic>Identification and classification</topic><topic>iron</topic><topic>Iron chlorides</topic><topic>Iron compounds</topic><topic>Life Sciences</topic><topic>Metabolic flux</topic><topic>Metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Monosaccharides</topic><topic>mycelium</topic><topic>Nanoparticles</topic><topic>nitrogen</topic><topic>Nitrogen sources</topic><topic>Nucleoside analogs</topic><topic>Nucleosides</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>pentoses</topic><topic>phosphates</topic><topic>Phosphoribosyltransferase</topic><topic>Properties</topic><topic>Protein biosynthesis</topic><topic>Selenite</topic><topic>selenites</topic><topic>Selenium</topic><topic>Selenocysteine</topic><topic>Selenomethionine</topic><topic>Sugars</topic><topic>Trace elements</topic><topic>Xylose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bingjie</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Zhang, Sasa</creatorcontrib><creatorcontrib>Hu, Ting</creatorcontrib><creatorcontrib>Guo, Yanbin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bingjie</au><au>Zhang, Yong</au><au>Zhang, Sasa</au><au>Hu, Ting</au><au>Guo, Yanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>107</volume><issue>24</issue><spage>7403</spage><epage>7416</epage><pages>7403-7416</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris . To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett–Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2–7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. Key points • Cordycepin production in the CCD max group was 5.2-fold than that of the control. •  Glucose uptake of the CCD max group was accelerated and cell wall was damaged. •  The metabolic flux was concentrated to the cordycepin synthesis pathway. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00253-023-12792-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0134-2849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2023-12, Vol.107 (24), p.7403-7416
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2870989679
source SpringerLink Journals - AutoHoldings
subjects Adenosine
Analysis
Ascomycota
ATP phosphoribosyltransferase
Biomedical and Life Sciences
Biosynthesis
Biotechnological Products and Process Engineering
Biotechnology
carbon
Carbon sources
Cell walls
Cordycepin
Cordyceps militaris
Fermentation
ferrous chloride
Fungi
Gene expression
Glucose
Glycine
Glycolysis
Hexokinase
Histidine
Identification and classification
iron
Iron chlorides
Iron compounds
Life Sciences
Metabolic flux
Metabolism
Microbial Genetics and Genomics
Microbiology
Monosaccharides
mycelium
Nanoparticles
nitrogen
Nitrogen sources
Nucleoside analogs
Nucleosides
Pentose
Pentose phosphate pathway
pentoses
phosphates
Phosphoribosyltransferase
Properties
Protein biosynthesis
Selenite
selenites
Selenium
Selenocysteine
Selenomethionine
Sugars
Trace elements
Xylose
title Multifactorial interaction of selenium, iron, xylose, and glycine on cordycepin metabolism in Cordyceps militaris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifactorial%20interaction%20of%20selenium,%20iron,%20xylose,%20and%20glycine%20on%20cordycepin%20metabolism%20in%20Cordyceps%20militaris&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhao,%20Bingjie&rft.date=2023-12-01&rft.volume=107&rft.issue=24&rft.spage=7403&rft.epage=7416&rft.pages=7403-7416&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-023-12792-x&rft_dat=%3Cgale_proqu%3EA773284266%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891091000&rft_id=info:pmid/&rft_galeid=A773284266&rfr_iscdi=true