Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging

Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-10, Vol.95 (40), p.15025-15032
Hauptverfasser: Li, Tong, Sun, Mengxu, Zhou, Qianying, Liang, Pengying, Huang, Ting, Guo, Mingqi, Xie, Baoping, Li, Chunrong, Li, Minmin, Duan, Wen-Jun, Chen, Jin-Xiang, Dai, Zong, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15032
container_issue 40
container_start_page 15025
container_title Analytical chemistry (Washington)
container_volume 95
creator Li, Tong
Sun, Mengxu
Zhou, Qianying
Liang, Pengying
Huang, Ting
Guo, Mingqi
Xie, Baoping
Li, Chunrong
Li, Minmin
Duan, Wen-Jun
Chen, Jin-Xiang
Dai, Zong
Chen, Jun
description Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.
doi_str_mv 10.1021/acs.analchem.3c03012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870987300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878404591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwiceGSsv5rkmNVClSqCkLA1XJsp6RK7GKnoPL0uLRw4MBpV5qZ1c6H0DmGAQaCr6QKA2llo15NO6AKKGBygHqYE0iHeU4OUQ8AaEoygGN0EsISAGPAwx56mVjtFsa6dUgm9nPTmvTBfRhvdHI9HyVzaV3rOueT-5XxsqvtIqltMqvft9vYNE1Iqqi2tfLuMQamrVxE6RQdVbIJ5mw_--j5ZvI0vktn97fT8WiWSsppl0pdak200tLoodIVJXnJVCk1lRyYJpRAWfFCF5oBzziXhBQaDM0MA10QQvvocnd35d3b2oROtHVQ8S1pTawkSJ5BkWc0tu-jiz_WpVv7SO3blTNgvMDRxXau2CcEbyqx8nUr_UZgEFvYIsIWP7DFHnaMwS62VX_v_hv5AlOAheY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878404591</pqid></control><display><type>article</type><title>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</title><source>American Chemical Society Journals</source><creator>Li, Tong ; Sun, Mengxu ; Zhou, Qianying ; Liang, Pengying ; Huang, Ting ; Guo, Mingqi ; Xie, Baoping ; Li, Chunrong ; Li, Minmin ; Duan, Wen-Jun ; Chen, Jin-Xiang ; Dai, Zong ; Chen, Jun</creator><creatorcontrib>Li, Tong ; Sun, Mengxu ; Zhou, Qianying ; Liang, Pengying ; Huang, Ting ; Guo, Mingqi ; Xie, Baoping ; Li, Chunrong ; Li, Minmin ; Duan, Wen-Jun ; Chen, Jin-Xiang ; Dai, Zong ; Chen, Jun</creatorcontrib><description>Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c03012</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Additives ; Cells (biology) ; Deoxyribonucleic acid ; DNA ; Enzymes ; Medical imaging ; MicroRNAs ; miRNA ; Nanoparticles ; Nanotechnology devices ; Ribonucleic acid ; RNA ; Tumor cells ; Tumors</subject><ispartof>Analytical chemistry (Washington), 2023-10, Vol.95 (40), p.15025-15032</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 10, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</citedby><cites>FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</cites><orcidid>0000-0002-9117-7447 ; 0000-0002-6946-3623 ; 0000-0002-3646-7396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c03012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c03012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Sun, Mengxu</creatorcontrib><creatorcontrib>Zhou, Qianying</creatorcontrib><creatorcontrib>Liang, Pengying</creatorcontrib><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Guo, Mingqi</creatorcontrib><creatorcontrib>Xie, Baoping</creatorcontrib><creatorcontrib>Li, Chunrong</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Duan, Wen-Jun</creatorcontrib><creatorcontrib>Chen, Jin-Xiang</creatorcontrib><creatorcontrib>Dai, Zong</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.</description><subject>Additives</subject><subject>Cells (biology)</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Medical imaging</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Nanoparticles</subject><subject>Nanotechnology devices</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwiceGSsv5rkmNVClSqCkLA1XJsp6RK7GKnoPL0uLRw4MBpV5qZ1c6H0DmGAQaCr6QKA2llo15NO6AKKGBygHqYE0iHeU4OUQ8AaEoygGN0EsISAGPAwx56mVjtFsa6dUgm9nPTmvTBfRhvdHI9HyVzaV3rOueT-5XxsqvtIqltMqvft9vYNE1Iqqi2tfLuMQamrVxE6RQdVbIJ5mw_--j5ZvI0vktn97fT8WiWSsppl0pdak200tLoodIVJXnJVCk1lRyYJpRAWfFCF5oBzziXhBQaDM0MA10QQvvocnd35d3b2oROtHVQ8S1pTawkSJ5BkWc0tu-jiz_WpVv7SO3blTNgvMDRxXau2CcEbyqx8nUr_UZgEFvYIsIWP7DFHnaMwS62VX_v_hv5AlOAheY</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Li, Tong</creator><creator>Sun, Mengxu</creator><creator>Zhou, Qianying</creator><creator>Liang, Pengying</creator><creator>Huang, Ting</creator><creator>Guo, Mingqi</creator><creator>Xie, Baoping</creator><creator>Li, Chunrong</creator><creator>Li, Minmin</creator><creator>Duan, Wen-Jun</creator><creator>Chen, Jin-Xiang</creator><creator>Dai, Zong</creator><creator>Chen, Jun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9117-7447</orcidid><orcidid>https://orcid.org/0000-0002-6946-3623</orcidid><orcidid>https://orcid.org/0000-0002-3646-7396</orcidid></search><sort><creationdate>20231010</creationdate><title>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</title><author>Li, Tong ; Sun, Mengxu ; Zhou, Qianying ; Liang, Pengying ; Huang, Ting ; Guo, Mingqi ; Xie, Baoping ; Li, Chunrong ; Li, Minmin ; Duan, Wen-Jun ; Chen, Jin-Xiang ; Dai, Zong ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Cells (biology)</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Medical imaging</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Nanoparticles</topic><topic>Nanotechnology devices</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Sun, Mengxu</creatorcontrib><creatorcontrib>Zhou, Qianying</creatorcontrib><creatorcontrib>Liang, Pengying</creatorcontrib><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Guo, Mingqi</creatorcontrib><creatorcontrib>Xie, Baoping</creatorcontrib><creatorcontrib>Li, Chunrong</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Duan, Wen-Jun</creatorcontrib><creatorcontrib>Chen, Jin-Xiang</creatorcontrib><creatorcontrib>Dai, Zong</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Sun, Mengxu</au><au>Zhou, Qianying</au><au>Liang, Pengying</au><au>Huang, Ting</au><au>Guo, Mingqi</au><au>Xie, Baoping</au><au>Li, Chunrong</au><au>Li, Minmin</au><au>Duan, Wen-Jun</au><au>Chen, Jin-Xiang</au><au>Dai, Zong</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-10-10</date><risdate>2023</risdate><volume>95</volume><issue>40</issue><spage>15025</spage><epage>15032</epage><pages>15025-15032</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c03012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9117-7447</orcidid><orcidid>https://orcid.org/0000-0002-6946-3623</orcidid><orcidid>https://orcid.org/0000-0002-3646-7396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-10, Vol.95 (40), p.15025-15032
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2870987300
source American Chemical Society Journals
subjects Additives
Cells (biology)
Deoxyribonucleic acid
DNA
Enzymes
Medical imaging
MicroRNAs
miRNA
Nanoparticles
Nanotechnology devices
Ribonucleic acid
RNA
Tumor cells
Tumors
title Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20Enzyme-Powered%20DNA%20Nanomotor%20Operating%20in%20Living%20Cells%20for%20microRNA%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Tong&rft.date=2023-10-10&rft.volume=95&rft.issue=40&rft.spage=15025&rft.epage=15032&rft.pages=15025-15032&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c03012&rft_dat=%3Cproquest_cross%3E2878404591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878404591&rft_id=info:pmid/&rfr_iscdi=true