Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging
Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and c...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-10, Vol.95 (40), p.15025-15032 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15032 |
---|---|
container_issue | 40 |
container_start_page | 15025 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Li, Tong Sun, Mengxu Zhou, Qianying Liang, Pengying Huang, Ting Guo, Mingqi Xie, Baoping Li, Chunrong Li, Minmin Duan, Wen-Jun Chen, Jin-Xiang Dai, Zong Chen, Jun |
description | Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications. |
doi_str_mv | 10.1021/acs.analchem.3c03012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870987300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878404591</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwiceGSsv5rkmNVClSqCkLA1XJsp6RK7GKnoPL0uLRw4MBpV5qZ1c6H0DmGAQaCr6QKA2llo15NO6AKKGBygHqYE0iHeU4OUQ8AaEoygGN0EsISAGPAwx56mVjtFsa6dUgm9nPTmvTBfRhvdHI9HyVzaV3rOueT-5XxsqvtIqltMqvft9vYNE1Iqqi2tfLuMQamrVxE6RQdVbIJ5mw_--j5ZvI0vktn97fT8WiWSsppl0pdak200tLoodIVJXnJVCk1lRyYJpRAWfFCF5oBzziXhBQaDM0MA10QQvvocnd35d3b2oROtHVQ8S1pTawkSJ5BkWc0tu-jiz_WpVv7SO3blTNgvMDRxXau2CcEbyqx8nUr_UZgEFvYIsIWP7DFHnaMwS62VX_v_hv5AlOAheY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878404591</pqid></control><display><type>article</type><title>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</title><source>American Chemical Society Journals</source><creator>Li, Tong ; Sun, Mengxu ; Zhou, Qianying ; Liang, Pengying ; Huang, Ting ; Guo, Mingqi ; Xie, Baoping ; Li, Chunrong ; Li, Minmin ; Duan, Wen-Jun ; Chen, Jin-Xiang ; Dai, Zong ; Chen, Jun</creator><creatorcontrib>Li, Tong ; Sun, Mengxu ; Zhou, Qianying ; Liang, Pengying ; Huang, Ting ; Guo, Mingqi ; Xie, Baoping ; Li, Chunrong ; Li, Minmin ; Duan, Wen-Jun ; Chen, Jin-Xiang ; Dai, Zong ; Chen, Jun</creatorcontrib><description>Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c03012</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Additives ; Cells (biology) ; Deoxyribonucleic acid ; DNA ; Enzymes ; Medical imaging ; MicroRNAs ; miRNA ; Nanoparticles ; Nanotechnology devices ; Ribonucleic acid ; RNA ; Tumor cells ; Tumors</subject><ispartof>Analytical chemistry (Washington), 2023-10, Vol.95 (40), p.15025-15032</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 10, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</citedby><cites>FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</cites><orcidid>0000-0002-9117-7447 ; 0000-0002-6946-3623 ; 0000-0002-3646-7396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c03012$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c03012$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Sun, Mengxu</creatorcontrib><creatorcontrib>Zhou, Qianying</creatorcontrib><creatorcontrib>Liang, Pengying</creatorcontrib><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Guo, Mingqi</creatorcontrib><creatorcontrib>Xie, Baoping</creatorcontrib><creatorcontrib>Li, Chunrong</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Duan, Wen-Jun</creatorcontrib><creatorcontrib>Chen, Jin-Xiang</creatorcontrib><creatorcontrib>Dai, Zong</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.</description><subject>Additives</subject><subject>Cells (biology)</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Medical imaging</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Nanoparticles</subject><subject>Nanotechnology devices</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwiceGSsv5rkmNVClSqCkLA1XJsp6RK7GKnoPL0uLRw4MBpV5qZ1c6H0DmGAQaCr6QKA2llo15NO6AKKGBygHqYE0iHeU4OUQ8AaEoygGN0EsISAGPAwx56mVjtFsa6dUgm9nPTmvTBfRhvdHI9HyVzaV3rOueT-5XxsqvtIqltMqvft9vYNE1Iqqi2tfLuMQamrVxE6RQdVbIJ5mw_--j5ZvI0vktn97fT8WiWSsppl0pdak200tLoodIVJXnJVCk1lRyYJpRAWfFCF5oBzziXhBQaDM0MA10QQvvocnd35d3b2oROtHVQ8S1pTawkSJ5BkWc0tu-jiz_WpVv7SO3blTNgvMDRxXau2CcEbyqx8nUr_UZgEFvYIsIWP7DFHnaMwS62VX_v_hv5AlOAheY</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Li, Tong</creator><creator>Sun, Mengxu</creator><creator>Zhou, Qianying</creator><creator>Liang, Pengying</creator><creator>Huang, Ting</creator><creator>Guo, Mingqi</creator><creator>Xie, Baoping</creator><creator>Li, Chunrong</creator><creator>Li, Minmin</creator><creator>Duan, Wen-Jun</creator><creator>Chen, Jin-Xiang</creator><creator>Dai, Zong</creator><creator>Chen, Jun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9117-7447</orcidid><orcidid>https://orcid.org/0000-0002-6946-3623</orcidid><orcidid>https://orcid.org/0000-0002-3646-7396</orcidid></search><sort><creationdate>20231010</creationdate><title>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</title><author>Li, Tong ; Sun, Mengxu ; Zhou, Qianying ; Liang, Pengying ; Huang, Ting ; Guo, Mingqi ; Xie, Baoping ; Li, Chunrong ; Li, Minmin ; Duan, Wen-Jun ; Chen, Jin-Xiang ; Dai, Zong ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-adbdd2dcdaed6cdf328b4cbad3a504d2320bf59d9d405755a229d0e37e40d9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Cells (biology)</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Medical imaging</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Nanoparticles</topic><topic>Nanotechnology devices</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Sun, Mengxu</creatorcontrib><creatorcontrib>Zhou, Qianying</creatorcontrib><creatorcontrib>Liang, Pengying</creatorcontrib><creatorcontrib>Huang, Ting</creatorcontrib><creatorcontrib>Guo, Mingqi</creatorcontrib><creatorcontrib>Xie, Baoping</creatorcontrib><creatorcontrib>Li, Chunrong</creatorcontrib><creatorcontrib>Li, Minmin</creatorcontrib><creatorcontrib>Duan, Wen-Jun</creatorcontrib><creatorcontrib>Chen, Jin-Xiang</creatorcontrib><creatorcontrib>Dai, Zong</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tong</au><au>Sun, Mengxu</au><au>Zhou, Qianying</au><au>Liang, Pengying</au><au>Huang, Ting</au><au>Guo, Mingqi</au><au>Xie, Baoping</au><au>Li, Chunrong</au><au>Li, Minmin</au><au>Duan, Wen-Jun</au><au>Chen, Jin-Xiang</au><au>Dai, Zong</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-10-10</date><risdate>2023</risdate><volume>95</volume><issue>40</issue><spage>15025</spage><epage>15032</epage><pages>15025-15032</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Accurate and specific imaging of low-abundance microRNA (miRNA) in living cells is extremely important for disease diagnosis and monitoring of disease progression. DNA nanomotors have shown great potential for imaging molecules of interest in living cells. However, inappropriate driving forces and complex design and operation procedures have hindered their further application. Here, we proposed an endogenous enzyme-powered DNA nanomotor (EEPDN), which employs an endogenous APE1 enzyme as fuel to execute repetitive cycles of motion for miRNA imaging in living cells. The whole motor system is constructed based on gold nanoparticles without other auxiliary additives. Due to the high efficiency of APE1, this EEPDN system has achieved highly sensitive miRNA imaging in living cells within 1.5 h. This strategy was also successfully used to differentiate the expression of specific miRNA between tumor cells and normal cells, demonstrating a high tumor cell selectivity. This strategy can promote the development of novel nanomotors and is expected to be a perfect intracellular molecular imaging tool for biological and medical applications.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c03012</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9117-7447</orcidid><orcidid>https://orcid.org/0000-0002-6946-3623</orcidid><orcidid>https://orcid.org/0000-0002-3646-7396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-10, Vol.95 (40), p.15025-15032 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2870987300 |
source | American Chemical Society Journals |
subjects | Additives Cells (biology) Deoxyribonucleic acid DNA Enzymes Medical imaging MicroRNAs miRNA Nanoparticles Nanotechnology devices Ribonucleic acid RNA Tumor cells Tumors |
title | Endogenous Enzyme-Powered DNA Nanomotor Operating in Living Cells for microRNA Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20Enzyme-Powered%20DNA%20Nanomotor%20Operating%20in%20Living%20Cells%20for%20microRNA%20Imaging&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Tong&rft.date=2023-10-10&rft.volume=95&rft.issue=40&rft.spage=15025&rft.epage=15032&rft.pages=15025-15032&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c03012&rft_dat=%3Cproquest_cross%3E2878404591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878404591&rft_id=info:pmid/&rfr_iscdi=true |