The use of noise properties in set theoretic estimation
In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The ba...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 1991-07, Vol.39 (7), p.1630-1641 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1641 |
---|---|
container_issue | 7 |
container_start_page | 1630 |
container_title | IEEE transactions on signal processing |
container_volume | 39 |
creator | Combettes, P.L. Trussell, H.J. |
description | In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.< > |
doi_str_mv | 10.1109/78.134400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28709598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>134400</ieee_id><sourcerecordid>28709598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWKsHr55yEjxsTTaf7yjFqlDwUsFb2Ma3NNJuapI9-N8bWcHTDMyP94Yh5JqzBecM7o1dcCElYydkxkHyhkmjT6tnSjTKmvdzcpHzJ2NcStAzYjY7pGNGGns6xFDNMcUjphIw0zDQjIWWHcaEJXiKuYRDV0IcLslZ3-0zXv3pnLytHjfL52b9-vSyfFg3vjWmNNx3fitaQC2EVtJbZbVUSpsPC2rbaw1ceO9BCMCu3fYWFQIaYFZJ4L0Qc3I73a21vsb63x1C9rjfdwPGMbvWGgYKbAXvJtCnmHPC3h1T7Zq-HWfudxpnrJumqezNxAZE_Oem8Ae1yl0f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28709598</pqid></control><display><type>article</type><title>The use of noise properties in set theoretic estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Combettes, P.L. ; Trussell, H.J.</creator><creatorcontrib>Combettes, P.L. ; Trussell, H.J.</creatorcontrib><description>In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.< ></description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.134400</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Digital signal processing ; Estimation theory ; Nonlinear filters ; Process design ; Signal design ; Signal generators ; Statistics ; Stochastic processes ; Yield estimation</subject><ispartof>IEEE transactions on signal processing, 1991-07, Vol.39 (7), p.1630-1641</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</citedby><cites>FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/134400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/134400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Trussell, H.J.</creatorcontrib><title>The use of noise properties in set theoretic estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.< ></description><subject>Cities and towns</subject><subject>Digital signal processing</subject><subject>Estimation theory</subject><subject>Nonlinear filters</subject><subject>Process design</subject><subject>Signal design</subject><subject>Signal generators</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Yield estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWKsHr55yEjxsTTaf7yjFqlDwUsFb2Ma3NNJuapI9-N8bWcHTDMyP94Yh5JqzBecM7o1dcCElYydkxkHyhkmjT6tnSjTKmvdzcpHzJ2NcStAzYjY7pGNGGns6xFDNMcUjphIw0zDQjIWWHcaEJXiKuYRDV0IcLslZ3-0zXv3pnLytHjfL52b9-vSyfFg3vjWmNNx3fitaQC2EVtJbZbVUSpsPC2rbaw1ceO9BCMCu3fYWFQIaYFZJ4L0Qc3I73a21vsb63x1C9rjfdwPGMbvWGgYKbAXvJtCnmHPC3h1T7Zq-HWfudxpnrJumqezNxAZE_Oem8Ae1yl0f</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Combettes, P.L.</creator><creator>Trussell, H.J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910701</creationdate><title>The use of noise properties in set theoretic estimation</title><author>Combettes, P.L. ; Trussell, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Cities and towns</topic><topic>Digital signal processing</topic><topic>Estimation theory</topic><topic>Nonlinear filters</topic><topic>Process design</topic><topic>Signal design</topic><topic>Signal generators</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Trussell, H.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Combettes, P.L.</au><au>Trussell, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of noise properties in set theoretic estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1991-07-01</date><risdate>1991</risdate><volume>39</volume><issue>7</issue><spage>1630</spage><epage>1641</epage><pages>1630-1641</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.< ></abstract><pub>IEEE</pub><doi>10.1109/78.134400</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 1991-07, Vol.39 (7), p.1630-1641 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28709598 |
source | IEEE Electronic Library (IEL) |
subjects | Cities and towns Digital signal processing Estimation theory Nonlinear filters Process design Signal design Signal generators Statistics Stochastic processes Yield estimation |
title | The use of noise properties in set theoretic estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20noise%20properties%20in%20set%20theoretic%20estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Combettes,%20P.L.&rft.date=1991-07-01&rft.volume=39&rft.issue=7&rft.spage=1630&rft.epage=1641&rft.pages=1630-1641&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.134400&rft_dat=%3Cproquest_RIE%3E28709598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28709598&rft_id=info:pmid/&rft_ieee_id=134400&rfr_iscdi=true |