The use of noise properties in set theoretic estimation

In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1991-07, Vol.39 (7), p.1630-1641
Hauptverfasser: Combettes, P.L., Trussell, H.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1641
container_issue 7
container_start_page 1630
container_title IEEE transactions on signal processing
container_volume 39
creator Combettes, P.L.
Trussell, H.J.
description In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.< >
doi_str_mv 10.1109/78.134400
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28709598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>134400</ieee_id><sourcerecordid>28709598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWKsHr55yEjxsTTaf7yjFqlDwUsFb2Ma3NNJuapI9-N8bWcHTDMyP94Yh5JqzBecM7o1dcCElYydkxkHyhkmjT6tnSjTKmvdzcpHzJ2NcStAzYjY7pGNGGns6xFDNMcUjphIw0zDQjIWWHcaEJXiKuYRDV0IcLslZ3-0zXv3pnLytHjfL52b9-vSyfFg3vjWmNNx3fitaQC2EVtJbZbVUSpsPC2rbaw1ceO9BCMCu3fYWFQIaYFZJ4L0Qc3I73a21vsb63x1C9rjfdwPGMbvWGgYKbAXvJtCnmHPC3h1T7Zq-HWfudxpnrJumqezNxAZE_Oem8Ae1yl0f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28709598</pqid></control><display><type>article</type><title>The use of noise properties in set theoretic estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Combettes, P.L. ; Trussell, H.J.</creator><creatorcontrib>Combettes, P.L. ; Trussell, H.J.</creatorcontrib><description>In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.134400</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Digital signal processing ; Estimation theory ; Nonlinear filters ; Process design ; Signal design ; Signal generators ; Statistics ; Stochastic processes ; Yield estimation</subject><ispartof>IEEE transactions on signal processing, 1991-07, Vol.39 (7), p.1630-1641</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</citedby><cites>FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/134400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/134400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Trussell, H.J.</creatorcontrib><title>The use of noise properties in set theoretic estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.&lt; &gt;</description><subject>Cities and towns</subject><subject>Digital signal processing</subject><subject>Estimation theory</subject><subject>Nonlinear filters</subject><subject>Process design</subject><subject>Signal design</subject><subject>Signal generators</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Yield estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWKsHr55yEjxsTTaf7yjFqlDwUsFb2Ma3NNJuapI9-N8bWcHTDMyP94Yh5JqzBecM7o1dcCElYydkxkHyhkmjT6tnSjTKmvdzcpHzJ2NcStAzYjY7pGNGGns6xFDNMcUjphIw0zDQjIWWHcaEJXiKuYRDV0IcLslZ3-0zXv3pnLytHjfL52b9-vSyfFg3vjWmNNx3fitaQC2EVtJbZbVUSpsPC2rbaw1ceO9BCMCu3fYWFQIaYFZJ4L0Qc3I73a21vsb63x1C9rjfdwPGMbvWGgYKbAXvJtCnmHPC3h1T7Zq-HWfudxpnrJumqezNxAZE_Oem8Ae1yl0f</recordid><startdate>19910701</startdate><enddate>19910701</enddate><creator>Combettes, P.L.</creator><creator>Trussell, H.J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19910701</creationdate><title>The use of noise properties in set theoretic estimation</title><author>Combettes, P.L. ; Trussell, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-1cacb329e633654c858645567d895bf66913ccc9339ea2bf8e5e9e79085491f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Cities and towns</topic><topic>Digital signal processing</topic><topic>Estimation theory</topic><topic>Nonlinear filters</topic><topic>Process design</topic><topic>Signal design</topic><topic>Signal generators</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combettes, P.L.</creatorcontrib><creatorcontrib>Trussell, H.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Combettes, P.L.</au><au>Trussell, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of noise properties in set theoretic estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1991-07-01</date><risdate>1991</risdate><volume>39</volume><issue>7</issue><spage>1630</spage><epage>1641</epage><pages>1630-1641</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In most digital signal processing problems, the goal is to estimate an object from noise corrupted observations of a physical system. The authors describe how a wide range of probabilistic information pertaining to the noise process can be used in a general set theoretic estimation framework. The basic principle is to constrain the sample statistics of the estimation residual to be consistent with those probabilistic properties of the noise which are available and to construct sets accordingly in the solution space. Adding these sets to the collection of sets describing the solution will yield a smaller feasibility set and, hence, more reliable estimates. Pieces of information relative to quantities such as range, moments, absolute moments, and second and higher order probabilistic attributes are considered, and properties of the corresponding sets are established. Simulations are provided to illustrate the theoretical developments.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/78.134400</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1991-07, Vol.39 (7), p.1630-1641
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28709598
source IEEE Electronic Library (IEL)
subjects Cities and towns
Digital signal processing
Estimation theory
Nonlinear filters
Process design
Signal design
Signal generators
Statistics
Stochastic processes
Yield estimation
title The use of noise properties in set theoretic estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20noise%20properties%20in%20set%20theoretic%20estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Combettes,%20P.L.&rft.date=1991-07-01&rft.volume=39&rft.issue=7&rft.spage=1630&rft.epage=1641&rft.pages=1630-1641&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.134400&rft_dat=%3Cproquest_RIE%3E28709598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28709598&rft_id=info:pmid/&rft_ieee_id=134400&rfr_iscdi=true