Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents
The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained&qu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2004-02, Vol.19 (1), p.455-462 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 1 |
container_start_page | 455 |
container_title | IEEE transactions on power systems |
container_volume | 19 |
creator | Stankovic, A.M. Saric, A.T. |
description | The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system. |
doi_str_mv | 10.1109/TPWRS.2003.821459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28709235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266600</ieee_id><sourcerecordid>2426972241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgCo6jDyBuggtddTxpmkyyFPEGgqIj7ixpesaJ9DImrdq3N-MIggtXgeQ7P-H8hOwzmDAG-mR293T_MEkB-ESlLBN6g4yYECoBOdWbZARKiURpAdtkJ4RXAJDxYUSeZ940wWHT0WX7gZ6GIXRYU9OYaggu0A_XLWiNJvQe68iSwgQs6Ys3Ay3azwhLuhgK70paDo2pnaX41rt3U0UcdsnW3FQB937OMXm8OJ-dXSU3t5fXZ6c3ieWCd4lW2mqlUpHZEkEwSAtVzNHwAiy3Rbyd60yhsWBQSCuUYpkUQnDIMp1Np3xMjte5S9--9Ri6vHbBYlWZBts-5EpLpiUHFuXRvzJVU9Bp_NWYHP6Br23v41pimuJKxECIiK2R9W0IHuf50rva-CFnkK-Kyb-LyVfF5Oti4szBesYh4q9PpZRRfQH0zYqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883856190</pqid></control><display><type>article</type><title>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</title><source>IEEE Electronic Library (IEL)</source><creator>Stankovic, A.M. ; Saric, A.T.</creator><creatorcontrib>Stankovic, A.M. ; Saric, A.T.</creatorcontrib><description>The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2003.821459</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Benchmarking ; Boundaries ; Computer programs ; Dynamic equivalents ; Dynamical systems ; Dynamics ; Equivalence ; Hybrid power systems ; Neural networks ; Power measurement ; Power system analysis computing ; Power system dynamics ; Power system measurements ; Power system modeling ; Power system simulation ; Power system transients ; Studies ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2004-02, Vol.19 (1), p.455-462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</citedby><cites>FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stankovic, A.M.</creatorcontrib><creatorcontrib>Saric, A.T.</creatorcontrib><title>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.</description><subject>Artificial neural networks</subject><subject>Benchmarking</subject><subject>Boundaries</subject><subject>Computer programs</subject><subject>Dynamic equivalents</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Equivalence</subject><subject>Hybrid power systems</subject><subject>Neural networks</subject><subject>Power measurement</subject><subject>Power system analysis computing</subject><subject>Power system dynamics</subject><subject>Power system measurements</subject><subject>Power system modeling</subject><subject>Power system simulation</subject><subject>Power system transients</subject><subject>Studies</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90ctKxDAUBuAgCo6jDyBuggtddTxpmkyyFPEGgqIj7ixpesaJ9DImrdq3N-MIggtXgeQ7P-H8hOwzmDAG-mR293T_MEkB-ESlLBN6g4yYECoBOdWbZARKiURpAdtkJ4RXAJDxYUSeZ940wWHT0WX7gZ6GIXRYU9OYaggu0A_XLWiNJvQe68iSwgQs6Ys3Ay3azwhLuhgK70paDo2pnaX41rt3U0UcdsnW3FQB937OMXm8OJ-dXSU3t5fXZ6c3ieWCd4lW2mqlUpHZEkEwSAtVzNHwAiy3Rbyd60yhsWBQSCuUYpkUQnDIMp1Np3xMjte5S9--9Ri6vHbBYlWZBts-5EpLpiUHFuXRvzJVU9Bp_NWYHP6Br23v41pimuJKxECIiK2R9W0IHuf50rva-CFnkK-Kyb-LyVfF5Oti4szBesYh4q9PpZRRfQH0zYqs</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Stankovic, A.M.</creator><creator>Saric, A.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040201</creationdate><title>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</title><author>Stankovic, A.M. ; Saric, A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural networks</topic><topic>Benchmarking</topic><topic>Boundaries</topic><topic>Computer programs</topic><topic>Dynamic equivalents</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Equivalence</topic><topic>Hybrid power systems</topic><topic>Neural networks</topic><topic>Power measurement</topic><topic>Power system analysis computing</topic><topic>Power system dynamics</topic><topic>Power system measurements</topic><topic>Power system modeling</topic><topic>Power system simulation</topic><topic>Power system transients</topic><topic>Studies</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankovic, A.M.</creatorcontrib><creatorcontrib>Saric, A.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stankovic, A.M.</au><au>Saric, A.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>19</volume><issue>1</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2003.821459</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2004-02, Vol.19 (1), p.455-462 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_miscellaneous_28709235 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Benchmarking Boundaries Computer programs Dynamic equivalents Dynamical systems Dynamics Equivalence Hybrid power systems Neural networks Power measurement Power system analysis computing Power system dynamics Power system measurements Power system modeling Power system simulation Power system transients Studies Transient analysis |
title | Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20power%20system%20analysis%20with%20measurement-based%20gray%20box%20and%20hybrid%20dynamic%20equivalents&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Stankovic,%20A.M.&rft.date=2004-02-01&rft.volume=19&rft.issue=1&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2003.821459&rft_dat=%3Cproquest_RIE%3E2426972241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883856190&rft_id=info:pmid/&rft_ieee_id=1266600&rfr_iscdi=true |