Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents

The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained&qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2004-02, Vol.19 (1), p.455-462
Hauptverfasser: Stankovic, A.M., Saric, A.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 1
container_start_page 455
container_title IEEE transactions on power systems
container_volume 19
creator Stankovic, A.M.
Saric, A.T.
description The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.
doi_str_mv 10.1109/TPWRS.2003.821459
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28709235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1266600</ieee_id><sourcerecordid>2426972241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</originalsourceid><addsrcrecordid>eNp90ctKxDAUBuAgCo6jDyBuggtddTxpmkyyFPEGgqIj7ixpesaJ9DImrdq3N-MIggtXgeQ7P-H8hOwzmDAG-mR293T_MEkB-ESlLBN6g4yYECoBOdWbZARKiURpAdtkJ4RXAJDxYUSeZ940wWHT0WX7gZ6GIXRYU9OYaggu0A_XLWiNJvQe68iSwgQs6Ys3Ay3azwhLuhgK70paDo2pnaX41rt3U0UcdsnW3FQB937OMXm8OJ-dXSU3t5fXZ6c3ieWCd4lW2mqlUpHZEkEwSAtVzNHwAiy3Rbyd60yhsWBQSCuUYpkUQnDIMp1Np3xMjte5S9--9Ri6vHbBYlWZBts-5EpLpiUHFuXRvzJVU9Bp_NWYHP6Br23v41pimuJKxECIiK2R9W0IHuf50rva-CFnkK-Kyb-LyVfF5Oti4szBesYh4q9PpZRRfQH0zYqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883856190</pqid></control><display><type>article</type><title>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</title><source>IEEE Electronic Library (IEL)</source><creator>Stankovic, A.M. ; Saric, A.T.</creator><creatorcontrib>Stankovic, A.M. ; Saric, A.T.</creatorcontrib><description>The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2003.821459</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Benchmarking ; Boundaries ; Computer programs ; Dynamic equivalents ; Dynamical systems ; Dynamics ; Equivalence ; Hybrid power systems ; Neural networks ; Power measurement ; Power system analysis computing ; Power system dynamics ; Power system measurements ; Power system modeling ; Power system simulation ; Power system transients ; Studies ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2004-02, Vol.19 (1), p.455-462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</citedby><cites>FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1266600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1266600$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stankovic, A.M.</creatorcontrib><creatorcontrib>Saric, A.T.</creatorcontrib><title>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.</description><subject>Artificial neural networks</subject><subject>Benchmarking</subject><subject>Boundaries</subject><subject>Computer programs</subject><subject>Dynamic equivalents</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Equivalence</subject><subject>Hybrid power systems</subject><subject>Neural networks</subject><subject>Power measurement</subject><subject>Power system analysis computing</subject><subject>Power system dynamics</subject><subject>Power system measurements</subject><subject>Power system modeling</subject><subject>Power system simulation</subject><subject>Power system transients</subject><subject>Studies</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90ctKxDAUBuAgCo6jDyBuggtddTxpmkyyFPEGgqIj7ixpesaJ9DImrdq3N-MIggtXgeQ7P-H8hOwzmDAG-mR293T_MEkB-ESlLBN6g4yYECoBOdWbZARKiURpAdtkJ4RXAJDxYUSeZ940wWHT0WX7gZ6GIXRYU9OYaggu0A_XLWiNJvQe68iSwgQs6Ys3Ay3azwhLuhgK70paDo2pnaX41rt3U0UcdsnW3FQB937OMXm8OJ-dXSU3t5fXZ6c3ieWCd4lW2mqlUpHZEkEwSAtVzNHwAiy3Rbyd60yhsWBQSCuUYpkUQnDIMp1Np3xMjte5S9--9Ri6vHbBYlWZBts-5EpLpiUHFuXRvzJVU9Bp_NWYHP6Br23v41pimuJKxECIiK2R9W0IHuf50rva-CFnkK-Kyb-LyVfF5Oti4szBesYh4q9PpZRRfQH0zYqs</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Stankovic, A.M.</creator><creator>Saric, A.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20040201</creationdate><title>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</title><author>Stankovic, A.M. ; Saric, A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-989c988254cde05102b8bfea3b0c3cb4cdf948eac0ae56c588146555304494773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural networks</topic><topic>Benchmarking</topic><topic>Boundaries</topic><topic>Computer programs</topic><topic>Dynamic equivalents</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Equivalence</topic><topic>Hybrid power systems</topic><topic>Neural networks</topic><topic>Power measurement</topic><topic>Power system analysis computing</topic><topic>Power system dynamics</topic><topic>Power system measurements</topic><topic>Power system modeling</topic><topic>Power system simulation</topic><topic>Power system transients</topic><topic>Studies</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankovic, A.M.</creatorcontrib><creatorcontrib>Saric, A.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stankovic, A.M.</au><au>Saric, A.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>19</volume><issue>1</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The paper addresses practical capabilities of artificial neural networks (ANNs) in developing measurement-based continuous-time dynamic equivalents for power systems. Our method is based on a set of measurements at boundary nodes between a subsystem that is to be modeled in detail ("retained" portion of the system) and the part that is to be replaced by a simplified ("equivalent") model. We are particularly interested in combining standard physics-based models with signal-based models derived from measurements. We utilize a color-coding scheme to distinguish between physics-based models (clear or white box) at one end, the signal-based models (opaque or black box) at the opposite end, and mixed (gray box) models in the middle. The paper also proposes a way for combining classical and ANN-based equivalents in a hybrid model implemented in a standard software environment for transient analysis (in this case, ETMSP). Our conclusions are based on simulations performed on a model of a benchmark multimachine power system derived from the WSCC system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2003.821459</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2004-02, Vol.19 (1), p.455-462
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_28709235
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Benchmarking
Boundaries
Computer programs
Dynamic equivalents
Dynamical systems
Dynamics
Equivalence
Hybrid power systems
Neural networks
Power measurement
Power system analysis computing
Power system dynamics
Power system measurements
Power system modeling
Power system simulation
Power system transients
Studies
Transient analysis
title Transient power system analysis with measurement-based gray box and hybrid dynamic equivalents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20power%20system%20analysis%20with%20measurement-based%20gray%20box%20and%20hybrid%20dynamic%20equivalents&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Stankovic,%20A.M.&rft.date=2004-02-01&rft.volume=19&rft.issue=1&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2003.821459&rft_dat=%3Cproquest_RIE%3E2426972241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883856190&rft_id=info:pmid/&rft_ieee_id=1266600&rfr_iscdi=true