A method for systematic improvement of stochastic grey-box models
A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that a...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2004-07, Vol.28 (8), p.1431-1449 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1449 |
---|---|
container_issue | 8 |
container_start_page | 1431 |
container_title | Computers & chemical engineering |
container_volume | 28 |
creator | Kristensen, Niels Rode Madsen, Henrik Jørgensen, Sten Bay |
description | A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered. |
doi_str_mv | 10.1016/j.compchemeng.2003.10.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28706488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135403002758</els_id><sourcerecordid>28706488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH8KFW8L6kcQ5VhUvqRIXOFuOvW5dJXWx04r-exKVA0dOI-3OjHY_Qu4pFBRo9bgtTOj3ZoM97tYFA-DjvBjlgsyorHkueF1ekhlAI3PKS3FNblLaAgATUs7IYpH1OGyCzVyIWTqlAXs9eJP5fh_DcaodsuCyNASz0WnarCOe8jZ8Z32w2KVbcuV0l_DuV-fk8_npY_mar95f3paLVW64pENu2qa2zErQzpSsaiRnTEvjrKhb0JpTgc4JaEojwQohgEHTVtAa3jSVM5LPycO5d7zr64BpUL1PBrtO7zAckmKyhmr86R9GVoOs6WhszkYTQ0oRndpH3-t4UhTURFdt1R-6aqI7rUYZs8tzdiSAR49RJeNxZ9D6iGZQNvh_tPwAGoOJYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28270871</pqid></control><display><type>article</type><title>A method for systematic improvement of stochastic grey-box models</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kristensen, Niels Rode ; Madsen, Henrik ; Jørgensen, Sten Bay</creator><creatorcontrib>Kristensen, Niels Rode ; Madsen, Henrik ; Jørgensen, Sten Bay</creatorcontrib><description>A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2003.10.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bioreactor modelling ; Model improvement ; Nonparametric modelling ; Parameter estimation ; Statistical tests ; Stochastic differential equations</subject><ispartof>Computers & chemical engineering, 2004-07, Vol.28 (8), p.1431-1449</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</citedby><cites>FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2003.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kristensen, Niels Rode</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><creatorcontrib>Jørgensen, Sten Bay</creatorcontrib><title>A method for systematic improvement of stochastic grey-box models</title><title>Computers & chemical engineering</title><description>A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.</description><subject>Bioreactor modelling</subject><subject>Model improvement</subject><subject>Nonparametric modelling</subject><subject>Parameter estimation</subject><subject>Statistical tests</subject><subject>Stochastic differential equations</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH8KFW8L6kcQ5VhUvqRIXOFuOvW5dJXWx04r-exKVA0dOI-3OjHY_Qu4pFBRo9bgtTOj3ZoM97tYFA-DjvBjlgsyorHkueF1ekhlAI3PKS3FNblLaAgATUs7IYpH1OGyCzVyIWTqlAXs9eJP5fh_DcaodsuCyNASz0WnarCOe8jZ8Z32w2KVbcuV0l_DuV-fk8_npY_mar95f3paLVW64pENu2qa2zErQzpSsaiRnTEvjrKhb0JpTgc4JaEojwQohgEHTVtAa3jSVM5LPycO5d7zr64BpUL1PBrtO7zAckmKyhmr86R9GVoOs6WhszkYTQ0oRndpH3-t4UhTURFdt1R-6aqI7rUYZs8tzdiSAR49RJeNxZ9D6iGZQNvh_tPwAGoOJYw</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Kristensen, Niels Rode</creator><creator>Madsen, Henrik</creator><creator>Jørgensen, Sten Bay</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20040701</creationdate><title>A method for systematic improvement of stochastic grey-box models</title><author>Kristensen, Niels Rode ; Madsen, Henrik ; Jørgensen, Sten Bay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioreactor modelling</topic><topic>Model improvement</topic><topic>Nonparametric modelling</topic><topic>Parameter estimation</topic><topic>Statistical tests</topic><topic>Stochastic differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristensen, Niels Rode</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><creatorcontrib>Jørgensen, Sten Bay</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristensen, Niels Rode</au><au>Madsen, Henrik</au><au>Jørgensen, Sten Bay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for systematic improvement of stochastic grey-box models</atitle><jtitle>Computers & chemical engineering</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>28</volume><issue>8</issue><spage>1431</spage><epage>1449</epage><pages>1431-1449</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2003.10.003</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2004-07, Vol.28 (8), p.1431-1449 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_proquest_miscellaneous_28706488 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bioreactor modelling Model improvement Nonparametric modelling Parameter estimation Statistical tests Stochastic differential equations |
title | A method for systematic improvement of stochastic grey-box models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20systematic%20improvement%20of%20stochastic%20grey-box%20models&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Kristensen,%20Niels%20Rode&rft.date=2004-07-01&rft.volume=28&rft.issue=8&rft.spage=1431&rft.epage=1449&rft.pages=1431-1449&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2003.10.003&rft_dat=%3Cproquest_cross%3E28706488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28270871&rft_id=info:pmid/&rft_els_id=S0098135403002758&rfr_iscdi=true |