A method for systematic improvement of stochastic grey-box models

A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2004-07, Vol.28 (8), p.1431-1449
Hauptverfasser: Kristensen, Niels Rode, Madsen, Henrik, Jørgensen, Sten Bay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1449
container_issue 8
container_start_page 1431
container_title Computers & chemical engineering
container_volume 28
creator Kristensen, Niels Rode
Madsen, Henrik
Jørgensen, Sten Bay
description A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.
doi_str_mv 10.1016/j.compchemeng.2003.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28706488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135403002758</els_id><sourcerecordid>28706488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH8KFW8L6kcQ5VhUvqRIXOFuOvW5dJXWx04r-exKVA0dOI-3OjHY_Qu4pFBRo9bgtTOj3ZoM97tYFA-DjvBjlgsyorHkueF1ekhlAI3PKS3FNblLaAgATUs7IYpH1OGyCzVyIWTqlAXs9eJP5fh_DcaodsuCyNASz0WnarCOe8jZ8Z32w2KVbcuV0l_DuV-fk8_npY_mar95f3paLVW64pENu2qa2zErQzpSsaiRnTEvjrKhb0JpTgc4JaEojwQohgEHTVtAa3jSVM5LPycO5d7zr64BpUL1PBrtO7zAckmKyhmr86R9GVoOs6WhszkYTQ0oRndpH3-t4UhTURFdt1R-6aqI7rUYZs8tzdiSAR49RJeNxZ9D6iGZQNvh_tPwAGoOJYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28270871</pqid></control><display><type>article</type><title>A method for systematic improvement of stochastic grey-box models</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kristensen, Niels Rode ; Madsen, Henrik ; Jørgensen, Sten Bay</creator><creatorcontrib>Kristensen, Niels Rode ; Madsen, Henrik ; Jørgensen, Sten Bay</creatorcontrib><description>A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2003.10.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bioreactor modelling ; Model improvement ; Nonparametric modelling ; Parameter estimation ; Statistical tests ; Stochastic differential equations</subject><ispartof>Computers &amp; chemical engineering, 2004-07, Vol.28 (8), p.1431-1449</ispartof><rights>2003 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</citedby><cites>FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2003.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kristensen, Niels Rode</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><creatorcontrib>Jørgensen, Sten Bay</creatorcontrib><title>A method for systematic improvement of stochastic grey-box models</title><title>Computers &amp; chemical engineering</title><description>A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.</description><subject>Bioreactor modelling</subject><subject>Model improvement</subject><subject>Nonparametric modelling</subject><subject>Parameter estimation</subject><subject>Statistical tests</subject><subject>Stochastic differential equations</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH8KFW8L6kcQ5VhUvqRIXOFuOvW5dJXWx04r-exKVA0dOI-3OjHY_Qu4pFBRo9bgtTOj3ZoM97tYFA-DjvBjlgsyorHkueF1ekhlAI3PKS3FNblLaAgATUs7IYpH1OGyCzVyIWTqlAXs9eJP5fh_DcaodsuCyNASz0WnarCOe8jZ8Z32w2KVbcuV0l_DuV-fk8_npY_mar95f3paLVW64pENu2qa2zErQzpSsaiRnTEvjrKhb0JpTgc4JaEojwQohgEHTVtAa3jSVM5LPycO5d7zr64BpUL1PBrtO7zAckmKyhmr86R9GVoOs6WhszkYTQ0oRndpH3-t4UhTURFdt1R-6aqI7rUYZs8tzdiSAR49RJeNxZ9D6iGZQNvh_tPwAGoOJYw</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Kristensen, Niels Rode</creator><creator>Madsen, Henrik</creator><creator>Jørgensen, Sten Bay</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20040701</creationdate><title>A method for systematic improvement of stochastic grey-box models</title><author>Kristensen, Niels Rode ; Madsen, Henrik ; Jørgensen, Sten Bay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-cb97d2d80afc52698322a8cfd47b0aa314eff4095c80d4440209b60bc3996fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioreactor modelling</topic><topic>Model improvement</topic><topic>Nonparametric modelling</topic><topic>Parameter estimation</topic><topic>Statistical tests</topic><topic>Stochastic differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristensen, Niels Rode</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><creatorcontrib>Jørgensen, Sten Bay</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristensen, Niels Rode</au><au>Madsen, Henrik</au><au>Jørgensen, Sten Bay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for systematic improvement of stochastic grey-box models</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>28</volume><issue>8</issue><spage>1431</spage><epage>1449</epage><pages>1431-1449</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented. The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional relations involving unmeasured variables can also be uncovered.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2003.10.003</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2004-07, Vol.28 (8), p.1431-1449
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_28706488
source ScienceDirect Journals (5 years ago - present)
subjects Bioreactor modelling
Model improvement
Nonparametric modelling
Parameter estimation
Statistical tests
Stochastic differential equations
title A method for systematic improvement of stochastic grey-box models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20systematic%20improvement%20of%20stochastic%20grey-box%20models&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Kristensen,%20Niels%20Rode&rft.date=2004-07-01&rft.volume=28&rft.issue=8&rft.spage=1431&rft.epage=1449&rft.pages=1431-1449&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2003.10.003&rft_dat=%3Cproquest_cross%3E28706488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28270871&rft_id=info:pmid/&rft_els_id=S0098135403002758&rfr_iscdi=true