An unsplit Godunov method for ideal MHD via constrained transport
We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algori...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2005-05, Vol.205 (2), p.509-539 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 2 |
container_start_page | 509 |
container_title | Journal of computational physics |
container_volume | 205 |
creator | Gardiner, Thomas A. Stone, James M. |
description | We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by area-averages at cell faces. We demonstrate that the fluxes of the area-averaged field used by CT can be made consistent with the fluxes of the volume-averaged field returned by a Riemann solver if they obey certain simple relationships. We use these relationships to derive new algorithms for constructing the CT fluxes at grid cell corners which reduce exactly to the equivalent one-dimensional solver for plane-parallel, grid-aligned flow. We show that the PPM reconstruction algorithm must include multidimensional terms for MHD, and we describe a number of important extensions that must be made to CTU in order for it to be used for MHD with CT. We present the results of a variety of test problems to demonstrate the method is accurate and robust. |
doi_str_mv | 10.1016/j.jcp.2004.11.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28703519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999104004784</els_id><sourcerecordid>28601014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-a4f078a724e62c4be34db3d86cdd2577427b5c53ed02ac4f371e68ce55a81eab3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOD5-gLtsdNd6kyZNi6vBN4y40XXIJLeYodOMSTvgvzfDCO7E1YXDd86Fj5ALBiUDVl-vypXdlBxAlIyVOTkgMwYtFFyx-pDMADgr2rZlx-QkpRUANFI0MzKfD3Qa0qb3I30MbhrClq5x_AiOdiFS79D09OXpjm69oTYMaYzGD-hovrkW4nhGjjrTJzz_uafk_eH-7fapWLw-Pt_OF4UVFR8LIzpQjVFcYM2tWGIl3LJyTW2d41IpwdVSWlmhA26s6CrFsG4sSmkahmZZnZKr_e4mhs8J06jXPlnsezNgmJLmjYJKsvYfYA3Zmcgg24M2hpQidnoT_drEL81A76zqlc5W9c6qZkznJHcuf8ZNsqbvsgXr02-xVrUEyTN3s-cwK9l6jDpZj4NF5yPaUbvg__jyDTeEjAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28601014</pqid></control><display><type>article</type><title>An unsplit Godunov method for ideal MHD via constrained transport</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gardiner, Thomas A. ; Stone, James M.</creator><creatorcontrib>Gardiner, Thomas A. ; Stone, James M.</creatorcontrib><description>We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by area-averages at cell faces. We demonstrate that the fluxes of the area-averaged field used by CT can be made consistent with the fluxes of the volume-averaged field returned by a Riemann solver if they obey certain simple relationships. We use these relationships to derive new algorithms for constructing the CT fluxes at grid cell corners which reduce exactly to the equivalent one-dimensional solver for plane-parallel, grid-aligned flow. We show that the PPM reconstruction algorithm must include multidimensional terms for MHD, and we describe a number of important extensions that must be made to CTU in order for it to be used for MHD with CT. We present the results of a variety of test problems to demonstrate the method is accurate and robust.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2004.11.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Exact sciences and technology ; Mathematical methods in physics ; Physics</subject><ispartof>Journal of computational physics, 2005-05, Vol.205 (2), p.509-539</ispartof><rights>2004 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-a4f078a724e62c4be34db3d86cdd2577427b5c53ed02ac4f371e68ce55a81eab3</citedby><cites>FETCH-LOGICAL-c432t-a4f078a724e62c4be34db3d86cdd2577427b5c53ed02ac4f371e68ce55a81eab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999104004784$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16765052$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardiner, Thomas A.</creatorcontrib><creatorcontrib>Stone, James M.</creatorcontrib><title>An unsplit Godunov method for ideal MHD via constrained transport</title><title>Journal of computational physics</title><description>We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by area-averages at cell faces. We demonstrate that the fluxes of the area-averaged field used by CT can be made consistent with the fluxes of the volume-averaged field returned by a Riemann solver if they obey certain simple relationships. We use these relationships to derive new algorithms for constructing the CT fluxes at grid cell corners which reduce exactly to the equivalent one-dimensional solver for plane-parallel, grid-aligned flow. We show that the PPM reconstruction algorithm must include multidimensional terms for MHD, and we describe a number of important extensions that must be made to CTU in order for it to be used for MHD with CT. We present the results of a variety of test problems to demonstrate the method is accurate and robust.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOD5-gLtsdNd6kyZNi6vBN4y40XXIJLeYodOMSTvgvzfDCO7E1YXDd86Fj5ALBiUDVl-vypXdlBxAlIyVOTkgMwYtFFyx-pDMADgr2rZlx-QkpRUANFI0MzKfD3Qa0qb3I30MbhrClq5x_AiOdiFS79D09OXpjm69oTYMaYzGD-hovrkW4nhGjjrTJzz_uafk_eH-7fapWLw-Pt_OF4UVFR8LIzpQjVFcYM2tWGIl3LJyTW2d41IpwdVSWlmhA26s6CrFsG4sSmkahmZZnZKr_e4mhs8J06jXPlnsezNgmJLmjYJKsvYfYA3Zmcgg24M2hpQidnoT_drEL81A76zqlc5W9c6qZkznJHcuf8ZNsqbvsgXr02-xVrUEyTN3s-cwK9l6jDpZj4NF5yPaUbvg__jyDTeEjAk</recordid><startdate>20050520</startdate><enddate>20050520</enddate><creator>Gardiner, Thomas A.</creator><creator>Stone, James M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20050520</creationdate><title>An unsplit Godunov method for ideal MHD via constrained transport</title><author>Gardiner, Thomas A. ; Stone, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-a4f078a724e62c4be34db3d86cdd2577427b5c53ed02ac4f371e68ce55a81eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardiner, Thomas A.</creatorcontrib><creatorcontrib>Stone, James M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardiner, Thomas A.</au><au>Stone, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsplit Godunov method for ideal MHD via constrained transport</atitle><jtitle>Journal of computational physics</jtitle><date>2005-05-20</date><risdate>2005</risdate><volume>205</volume><issue>2</issue><spage>509</spage><epage>539</epage><pages>509-539</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We describe a single step, second-order accurate Godunov scheme for ideal MHD based on combining the piecewise parabolic method (PPM) for performing spatial reconstruction, the corner transport upwind (CTU) method of Colella for multidimensional integration, and the constrained transport (CT) algorithm for preserving the divergence-free constraint on the magnetic field. We adopt the most compact form of CT, which requires the field be represented by area-averages at cell faces. We demonstrate that the fluxes of the area-averaged field used by CT can be made consistent with the fluxes of the volume-averaged field returned by a Riemann solver if they obey certain simple relationships. We use these relationships to derive new algorithms for constructing the CT fluxes at grid cell corners which reduce exactly to the equivalent one-dimensional solver for plane-parallel, grid-aligned flow. We show that the PPM reconstruction algorithm must include multidimensional terms for MHD, and we describe a number of important extensions that must be made to CTU in order for it to be used for MHD with CT. We present the results of a variety of test problems to demonstrate the method is accurate and robust.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2004.11.016</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2005-05, Vol.205 (2), p.509-539 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_28703519 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computational techniques Exact sciences and technology Mathematical methods in physics Physics |
title | An unsplit Godunov method for ideal MHD via constrained transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsplit%20Godunov%20method%20for%20ideal%20MHD%20via%20constrained%20transport&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Gardiner,%20Thomas%20A.&rft.date=2005-05-20&rft.volume=205&rft.issue=2&rft.spage=509&rft.epage=539&rft.pages=509-539&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2004.11.016&rft_dat=%3Cproquest_cross%3E28601014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28601014&rft_id=info:pmid/&rft_els_id=S0021999104004784&rfr_iscdi=true |