Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study

The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. A finite element model of the T11-L3 thoracolumbar segment was established to simulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World neurosurgery 2023-12, Vol.180, p.e429-e439
Hauptverfasser: Xilong, Cui, Junjun, Zhu, Yuliang, Sun, wanmei, Yang, Xiumei, Wang, Xiuling, Huang, Haiyang, Yu, Chengmin, Liang, Zikai, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e439
container_issue
container_start_page e429
container_title World neurosurgery
container_volume 180
creator Xilong, Cui
Junjun, Zhu
Yuliang, Sun
wanmei, Yang
Xiumei, Wang
Xiuling, Huang
Haiyang, Yu
Chengmin, Liang
Zikai, Hua
description The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed. The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced. The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.
doi_str_mv 10.1016/j.wneu.2023.09.084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870147218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875023013505</els_id><sourcerecordid>2870147218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EAgS8AAfkI5cG_yS1g7iUQgEJiQPlbDnOmrpK4mI7IN6eRC0c2cuOVjMj7YfQOSUZJXR6tc6-OugzRhjPSJkRme-hYyqFnEgxLff_dEGO0FmMazIMp7kU_BAdcSEKUeb8GMVb51swK905oxs89-1GBxd9h73Fd85aCNAlvAygUzuq1xR0gncHEVsf8HLlgza-6dtKB3zbh5jwYrikPsA1nuGF61wCfN_ALt3X36fowOomwtlun6C3xf1y_jh5fnl4ms-eJ4YX0zShtGZElACsKBinVNOaW8at5XVFp4KXucyhNBQ0J5UWMi_koGqQRLKiNBU_QZfb3k3wHz3EpFoXDTSN7sD3UTEpCM0Fo3Kwsq3VBB9jAKs2wbU6fCtK1MhbrdXIW428FSnVwHsIXez6-6qF-i_yS3cw3GwNMHz56SCoaBx0BmoXwCRVe_df_w-ykZId</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870147218</pqid></control><display><type>article</type><title>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xilong, Cui ; Junjun, Zhu ; Yuliang, Sun ; wanmei, Yang ; Xiumei, Wang ; Xiuling, Huang ; Haiyang, Yu ; Chengmin, Liang ; Zikai, Hua</creator><creatorcontrib>Xilong, Cui ; Junjun, Zhu ; Yuliang, Sun ; wanmei, Yang ; Xiumei, Wang ; Xiuling, Huang ; Haiyang, Yu ; Chengmin, Liang ; Zikai, Hua</creatorcontrib><description>The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed. The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced. The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.</description><identifier>ISSN: 1878-8750</identifier><identifier>ISSN: 1878-8769</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2023.09.084</identifier><identifier>PMID: 37757943</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomechanical Phenomena ; Burst fracture ; Finite Element Analysis ; Finite element analyze ; Humans ; Lumbar Vertebrae - injuries ; Lumbar Vertebrae - surgery ; Pedicle screw and rod construct ; Pedicle Screws ; Range of Motion, Articular ; Spinal Fractures - surgery ; Spinal Fusion ; Strategies ; Thoracic Vertebrae - injuries ; Thoracic Vertebrae - surgery ; Thoracolumbar</subject><ispartof>World neurosurgery, 2023-12, Vol.180, p.e429-e439</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</citedby><cites>FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37757943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xilong, Cui</creatorcontrib><creatorcontrib>Junjun, Zhu</creatorcontrib><creatorcontrib>Yuliang, Sun</creatorcontrib><creatorcontrib>wanmei, Yang</creatorcontrib><creatorcontrib>Xiumei, Wang</creatorcontrib><creatorcontrib>Xiuling, Huang</creatorcontrib><creatorcontrib>Haiyang, Yu</creatorcontrib><creatorcontrib>Chengmin, Liang</creatorcontrib><creatorcontrib>Zikai, Hua</creatorcontrib><title>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed. The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced. The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.</description><subject>Biomechanical Phenomena</subject><subject>Burst fracture</subject><subject>Finite Element Analysis</subject><subject>Finite element analyze</subject><subject>Humans</subject><subject>Lumbar Vertebrae - injuries</subject><subject>Lumbar Vertebrae - surgery</subject><subject>Pedicle screw and rod construct</subject><subject>Pedicle Screws</subject><subject>Range of Motion, Articular</subject><subject>Spinal Fractures - surgery</subject><subject>Spinal Fusion</subject><subject>Strategies</subject><subject>Thoracic Vertebrae - injuries</subject><subject>Thoracic Vertebrae - surgery</subject><subject>Thoracolumbar</subject><issn>1878-8750</issn><issn>1878-8769</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EAgS8AAfkI5cG_yS1g7iUQgEJiQPlbDnOmrpK4mI7IN6eRC0c2cuOVjMj7YfQOSUZJXR6tc6-OugzRhjPSJkRme-hYyqFnEgxLff_dEGO0FmMazIMp7kU_BAdcSEKUeb8GMVb51swK905oxs89-1GBxd9h73Fd85aCNAlvAygUzuq1xR0gncHEVsf8HLlgza-6dtKB3zbh5jwYrikPsA1nuGF61wCfN_ALt3X36fowOomwtlun6C3xf1y_jh5fnl4ms-eJ4YX0zShtGZElACsKBinVNOaW8at5XVFp4KXucyhNBQ0J5UWMi_koGqQRLKiNBU_QZfb3k3wHz3EpFoXDTSN7sD3UTEpCM0Fo3Kwsq3VBB9jAKs2wbU6fCtK1MhbrdXIW428FSnVwHsIXez6-6qF-i_yS3cw3GwNMHz56SCoaBx0BmoXwCRVe_df_w-ykZId</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Xilong, Cui</creator><creator>Junjun, Zhu</creator><creator>Yuliang, Sun</creator><creator>wanmei, Yang</creator><creator>Xiumei, Wang</creator><creator>Xiuling, Huang</creator><creator>Haiyang, Yu</creator><creator>Chengmin, Liang</creator><creator>Zikai, Hua</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202312</creationdate><title>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</title><author>Xilong, Cui ; Junjun, Zhu ; Yuliang, Sun ; wanmei, Yang ; Xiumei, Wang ; Xiuling, Huang ; Haiyang, Yu ; Chengmin, Liang ; Zikai, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanical Phenomena</topic><topic>Burst fracture</topic><topic>Finite Element Analysis</topic><topic>Finite element analyze</topic><topic>Humans</topic><topic>Lumbar Vertebrae - injuries</topic><topic>Lumbar Vertebrae - surgery</topic><topic>Pedicle screw and rod construct</topic><topic>Pedicle Screws</topic><topic>Range of Motion, Articular</topic><topic>Spinal Fractures - surgery</topic><topic>Spinal Fusion</topic><topic>Strategies</topic><topic>Thoracic Vertebrae - injuries</topic><topic>Thoracic Vertebrae - surgery</topic><topic>Thoracolumbar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xilong, Cui</creatorcontrib><creatorcontrib>Junjun, Zhu</creatorcontrib><creatorcontrib>Yuliang, Sun</creatorcontrib><creatorcontrib>wanmei, Yang</creatorcontrib><creatorcontrib>Xiumei, Wang</creatorcontrib><creatorcontrib>Xiuling, Huang</creatorcontrib><creatorcontrib>Haiyang, Yu</creatorcontrib><creatorcontrib>Chengmin, Liang</creatorcontrib><creatorcontrib>Zikai, Hua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xilong, Cui</au><au>Junjun, Zhu</au><au>Yuliang, Sun</au><au>wanmei, Yang</au><au>Xiumei, Wang</au><au>Xiuling, Huang</au><au>Haiyang, Yu</au><au>Chengmin, Liang</au><au>Zikai, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2023-12</date><risdate>2023</risdate><volume>180</volume><spage>e429</spage><epage>e439</epage><pages>e429-e439</pages><issn>1878-8750</issn><issn>1878-8769</issn><eissn>1878-8769</eissn><abstract>The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed. The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced. The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37757943</pmid><doi>10.1016/j.wneu.2023.09.084</doi></addata></record>
fulltext fulltext
identifier ISSN: 1878-8750
ispartof World neurosurgery, 2023-12, Vol.180, p.e429-e439
issn 1878-8750
1878-8769
1878-8769
language eng
recordid cdi_proquest_miscellaneous_2870147218
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Biomechanical Phenomena
Burst fracture
Finite Element Analysis
Finite element analyze
Humans
Lumbar Vertebrae - injuries
Lumbar Vertebrae - surgery
Pedicle screw and rod construct
Pedicle Screws
Range of Motion, Articular
Spinal Fractures - surgery
Spinal Fusion
Strategies
Thoracic Vertebrae - injuries
Thoracic Vertebrae - surgery
Thoracolumbar
title Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20Comparison%20of%20Different%20Treatment%20Strategies%20for%20Thoracolumbar%20Burst%20Fracture:%20A%20Finite%20Element%20Study&rft.jtitle=World%20neurosurgery&rft.au=Xilong,%20Cui&rft.date=2023-12&rft.volume=180&rft.spage=e429&rft.epage=e439&rft.pages=e429-e439&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2023.09.084&rft_dat=%3Cproquest_cross%3E2870147218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870147218&rft_id=info:pmid/37757943&rft_els_id=S1878875023013505&rfr_iscdi=true