Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study
The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis. A finite element model of the T11-L3 thoracolumbar segment was established to simulat...
Gespeichert in:
Veröffentlicht in: | World neurosurgery 2023-12, Vol.180, p.e429-e439 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e439 |
---|---|
container_issue | |
container_start_page | e429 |
container_title | World neurosurgery |
container_volume | 180 |
creator | Xilong, Cui Junjun, Zhu Yuliang, Sun wanmei, Yang Xiumei, Wang Xiuling, Huang Haiyang, Yu Chengmin, Liang Zikai, Hua |
description | The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis.
A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed.
The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced.
The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally. |
doi_str_mv | 10.1016/j.wneu.2023.09.084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2870147218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1878875023013505</els_id><sourcerecordid>2870147218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EAgS8AAfkI5cG_yS1g7iUQgEJiQPlbDnOmrpK4mI7IN6eRC0c2cuOVjMj7YfQOSUZJXR6tc6-OugzRhjPSJkRme-hYyqFnEgxLff_dEGO0FmMazIMp7kU_BAdcSEKUeb8GMVb51swK905oxs89-1GBxd9h73Fd85aCNAlvAygUzuq1xR0gncHEVsf8HLlgza-6dtKB3zbh5jwYrikPsA1nuGF61wCfN_ALt3X36fowOomwtlun6C3xf1y_jh5fnl4ms-eJ4YX0zShtGZElACsKBinVNOaW8at5XVFp4KXucyhNBQ0J5UWMi_koGqQRLKiNBU_QZfb3k3wHz3EpFoXDTSN7sD3UTEpCM0Fo3Kwsq3VBB9jAKs2wbU6fCtK1MhbrdXIW428FSnVwHsIXez6-6qF-i_yS3cw3GwNMHz56SCoaBx0BmoXwCRVe_df_w-ykZId</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2870147218</pqid></control><display><type>article</type><title>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xilong, Cui ; Junjun, Zhu ; Yuliang, Sun ; wanmei, Yang ; Xiumei, Wang ; Xiuling, Huang ; Haiyang, Yu ; Chengmin, Liang ; Zikai, Hua</creator><creatorcontrib>Xilong, Cui ; Junjun, Zhu ; Yuliang, Sun ; wanmei, Yang ; Xiumei, Wang ; Xiuling, Huang ; Haiyang, Yu ; Chengmin, Liang ; Zikai, Hua</creatorcontrib><description>The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis.
A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed.
The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced.
The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.</description><identifier>ISSN: 1878-8750</identifier><identifier>ISSN: 1878-8769</identifier><identifier>EISSN: 1878-8769</identifier><identifier>DOI: 10.1016/j.wneu.2023.09.084</identifier><identifier>PMID: 37757943</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomechanical Phenomena ; Burst fracture ; Finite Element Analysis ; Finite element analyze ; Humans ; Lumbar Vertebrae - injuries ; Lumbar Vertebrae - surgery ; Pedicle screw and rod construct ; Pedicle Screws ; Range of Motion, Articular ; Spinal Fractures - surgery ; Spinal Fusion ; Strategies ; Thoracic Vertebrae - injuries ; Thoracic Vertebrae - surgery ; Thoracolumbar</subject><ispartof>World neurosurgery, 2023-12, Vol.180, p.e429-e439</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</citedby><cites>FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37757943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xilong, Cui</creatorcontrib><creatorcontrib>Junjun, Zhu</creatorcontrib><creatorcontrib>Yuliang, Sun</creatorcontrib><creatorcontrib>wanmei, Yang</creatorcontrib><creatorcontrib>Xiumei, Wang</creatorcontrib><creatorcontrib>Xiuling, Huang</creatorcontrib><creatorcontrib>Haiyang, Yu</creatorcontrib><creatorcontrib>Chengmin, Liang</creatorcontrib><creatorcontrib>Zikai, Hua</creatorcontrib><title>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</title><title>World neurosurgery</title><addtitle>World Neurosurg</addtitle><description>The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis.
A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed.
The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced.
The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.</description><subject>Biomechanical Phenomena</subject><subject>Burst fracture</subject><subject>Finite Element Analysis</subject><subject>Finite element analyze</subject><subject>Humans</subject><subject>Lumbar Vertebrae - injuries</subject><subject>Lumbar Vertebrae - surgery</subject><subject>Pedicle screw and rod construct</subject><subject>Pedicle Screws</subject><subject>Range of Motion, Articular</subject><subject>Spinal Fractures - surgery</subject><subject>Spinal Fusion</subject><subject>Strategies</subject><subject>Thoracic Vertebrae - injuries</subject><subject>Thoracic Vertebrae - surgery</subject><subject>Thoracolumbar</subject><issn>1878-8750</issn><issn>1878-8769</issn><issn>1878-8769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1OwzAQhC0EAgS8AAfkI5cG_yS1g7iUQgEJiQPlbDnOmrpK4mI7IN6eRC0c2cuOVjMj7YfQOSUZJXR6tc6-OugzRhjPSJkRme-hYyqFnEgxLff_dEGO0FmMazIMp7kU_BAdcSEKUeb8GMVb51swK905oxs89-1GBxd9h73Fd85aCNAlvAygUzuq1xR0gncHEVsf8HLlgza-6dtKB3zbh5jwYrikPsA1nuGF61wCfN_ALt3X36fowOomwtlun6C3xf1y_jh5fnl4ms-eJ4YX0zShtGZElACsKBinVNOaW8at5XVFp4KXucyhNBQ0J5UWMi_koGqQRLKiNBU_QZfb3k3wHz3EpFoXDTSN7sD3UTEpCM0Fo3Kwsq3VBB9jAKs2wbU6fCtK1MhbrdXIW428FSnVwHsIXez6-6qF-i_yS3cw3GwNMHz56SCoaBx0BmoXwCRVe_df_w-ykZId</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Xilong, Cui</creator><creator>Junjun, Zhu</creator><creator>Yuliang, Sun</creator><creator>wanmei, Yang</creator><creator>Xiumei, Wang</creator><creator>Xiuling, Huang</creator><creator>Haiyang, Yu</creator><creator>Chengmin, Liang</creator><creator>Zikai, Hua</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202312</creationdate><title>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</title><author>Xilong, Cui ; Junjun, Zhu ; Yuliang, Sun ; wanmei, Yang ; Xiumei, Wang ; Xiuling, Huang ; Haiyang, Yu ; Chengmin, Liang ; Zikai, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-11d2079ee2552311a1d3f23ff3db16739484e9c1ea30ba78458a30de808259cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanical Phenomena</topic><topic>Burst fracture</topic><topic>Finite Element Analysis</topic><topic>Finite element analyze</topic><topic>Humans</topic><topic>Lumbar Vertebrae - injuries</topic><topic>Lumbar Vertebrae - surgery</topic><topic>Pedicle screw and rod construct</topic><topic>Pedicle Screws</topic><topic>Range of Motion, Articular</topic><topic>Spinal Fractures - surgery</topic><topic>Spinal Fusion</topic><topic>Strategies</topic><topic>Thoracic Vertebrae - injuries</topic><topic>Thoracic Vertebrae - surgery</topic><topic>Thoracolumbar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xilong, Cui</creatorcontrib><creatorcontrib>Junjun, Zhu</creatorcontrib><creatorcontrib>Yuliang, Sun</creatorcontrib><creatorcontrib>wanmei, Yang</creatorcontrib><creatorcontrib>Xiumei, Wang</creatorcontrib><creatorcontrib>Xiuling, Huang</creatorcontrib><creatorcontrib>Haiyang, Yu</creatorcontrib><creatorcontrib>Chengmin, Liang</creatorcontrib><creatorcontrib>Zikai, Hua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>World neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xilong, Cui</au><au>Junjun, Zhu</au><au>Yuliang, Sun</au><au>wanmei, Yang</au><au>Xiumei, Wang</au><au>Xiuling, Huang</au><au>Haiyang, Yu</au><au>Chengmin, Liang</au><au>Zikai, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study</atitle><jtitle>World neurosurgery</jtitle><addtitle>World Neurosurg</addtitle><date>2023-12</date><risdate>2023</risdate><volume>180</volume><spage>e429</spage><epage>e439</epage><pages>e429-e439</pages><issn>1878-8750</issn><issn>1878-8769</issn><eissn>1878-8769</eissn><abstract>The aim of this study was to compare the biomechanical performance of 6 pedicle screw internal fixation strategies for the treatment of burst fractures of the thoracolumbar spine using finite element (FE) analysis.
A finite element model of the T11-L3 thoracolumbar segment was established to simulate L1 vertebral burst fractures, and 6 models were conducted under multidirectional loading conditions: P2-D2, P1-D1, P2-D1,P1-D, P1-BF-D1, and P1-UF-D1. The range of motion (ROM) in the T12-L2 region and the von Mises stresses of pedicle screws and rods under the 6 internal fixation models were mainly analyzed.
The maximum ROM and von Mises stress were obtained under flexion motion in all models. The P1-BF-D1 model had the least ROM and screw stress. However, when the injured vertebra was not nailed bilaterally, the P1-UF-D1 model had the smallest ROM; the maximum von Mises stress on the screw and rod was remarkably higher than that recorded in the other models. Moreover, the P2-D1 model had a ROM similar to that of the P1-D2 model, but with lower screw stress. The 2 models outperformed the P1-D1 model in all 6 conditions. The P2-D2 model had a similar ROM with the P2-D1 model; nevertheless, the maximum von Mises stress was not substantially reduced.
The P1-BF-D1 model exhibited better stability and less von Mises stress on the pedicle screws and rods, thereby reducing the risk of screw loosening and fracture. The P2-D1 internal fixation approach is recommended when the fractured vertebrae are not nailed bilaterally.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37757943</pmid><doi>10.1016/j.wneu.2023.09.084</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1878-8750 |
ispartof | World neurosurgery, 2023-12, Vol.180, p.e429-e439 |
issn | 1878-8750 1878-8769 1878-8769 |
language | eng |
recordid | cdi_proquest_miscellaneous_2870147218 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Biomechanical Phenomena Burst fracture Finite Element Analysis Finite element analyze Humans Lumbar Vertebrae - injuries Lumbar Vertebrae - surgery Pedicle screw and rod construct Pedicle Screws Range of Motion, Articular Spinal Fractures - surgery Spinal Fusion Strategies Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Thoracolumbar |
title | Biomechanical Comparison of Different Treatment Strategies for Thoracolumbar Burst Fracture: A Finite Element Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20Comparison%20of%20Different%20Treatment%20Strategies%20for%20Thoracolumbar%20Burst%20Fracture:%20A%20Finite%20Element%20Study&rft.jtitle=World%20neurosurgery&rft.au=Xilong,%20Cui&rft.date=2023-12&rft.volume=180&rft.spage=e429&rft.epage=e439&rft.pages=e429-e439&rft.issn=1878-8750&rft.eissn=1878-8769&rft_id=info:doi/10.1016/j.wneu.2023.09.084&rft_dat=%3Cproquest_cross%3E2870147218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2870147218&rft_id=info:pmid/37757943&rft_els_id=S1878875023013505&rfr_iscdi=true |