Temporal segmentation of video objects for hierarchical object-based motion description

This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2002-02, Vol.11 (2), p.135-145
Hauptverfasser: Fu, Y., Ekin, A., Tekalp, A.M., Mehrotra, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 2
container_start_page 135
container_title IEEE transactions on image processing
container_volume 11
creator Fu, Y.
Ekin, A.
Tekalp, A.M.
Mehrotra, R.
description This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units (AU). Likewise, object-to-object interactions are decomposed into a hierarchy of low-level elementary reaction units (ERU) and high-level interaction units (IU). We then propose an algorithm for temporal segmentation of video objects into EMUs, whose dominant motion can be described by a single representative parametric model. The algorithm also computes a representative (dominant) affine model for each EMU. We also provide algorithms for identification of ERUs and for classification of the type of ERUs. Experimental results demonstrate that segmenting the life-span of video objects into EMUS and ERUs facilitates the generation of high-level visual summaries for fast browsing and navigation. At present, the formation of high-level action and interaction units is done interactively. We also provide a set of query-by-example results for low-level EMU retrieval from a database based on similarity of the representative dominant affine models.
doi_str_mv 10.1109/83.982821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28700948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>982821</ieee_id><sourcerecordid>1671380321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-6bda90aacc12afcf4b792d5e6978c3ac3f2f63ed1f8a203c68cdf9be9dbd3e903</originalsourceid><addsrcrecordid>eNqF0c9rFTEQB_Agiq3Vg1cPshT8ddiaSbL5cZSitlDwUvG4ZJOJzePt5pnsK_jfm-cuFnqopwzMJzMwX0JeAj0DoOaj5mdGM83gETkGI6ClVLDHtaadahUIc0SelbKhFEQH8ik5As2EkGCOyY9rHHcp221T8OeI02znmKYmheY2ekxNGjbo5tKElJubiNlmdxNd5UujHWxB34zp7y-PxeW4O9TPyZNgtwVfrO8J-f7l8_X5RXv17evl-aer1omOz60cvDXUWueA2eCCGJRhvkNplHbcOh5YkBw9BG0Z5U5q54MZ0PjBczSUn5B3y9xdTr_2WOZ-jMXhdmsnTPvSK847bhSXVb59UDKtKDVC_x8q1RmhDvD9gxCkAq4pZ1Dp6T26Sfs81cv0WguuoVOsog8LcjmVkjH0uxxHm3_3QPtD0L3m_RJ0ta_XgfthRH8n12QreLMCW2peIdvJxXLnuJBS68PSV4uLiPivvW75AwSSuEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884381572</pqid></control><display><type>article</type><title>Temporal segmentation of video objects for hierarchical object-based motion description</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Y. ; Ekin, A. ; Tekalp, A.M. ; Mehrotra, R.</creator><creatorcontrib>Fu, Y. ; Ekin, A. ; Tekalp, A.M. ; Mehrotra, R.</creatorcontrib><description>This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units (AU). Likewise, object-to-object interactions are decomposed into a hierarchy of low-level elementary reaction units (ERU) and high-level interaction units (IU). We then propose an algorithm for temporal segmentation of video objects into EMUs, whose dominant motion can be described by a single representative parametric model. The algorithm also computes a representative (dominant) affine model for each EMU. We also provide algorithms for identification of ERUs and for classification of the type of ERUs. Experimental results demonstrate that segmenting the life-span of video objects into EMUS and ERUs facilitates the generation of high-level visual summaries for fast browsing and navigation. At present, the formation of high-level action and interaction units is done interactively. We also provide a set of query-by-example results for low-level EMU retrieval from a database based on similarity of the representative dominant affine models.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.982821</identifier><identifier>PMID: 18244619</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Extravehicular activity ; Gold ; Hierarchies ; Humans ; Image processing ; Indexing ; Information retrieval ; Information, signal and communications theory ; Layout ; Mathematical models ; Multimedia databases ; Navigation ; Object motion ; Parametric statistics ; Pattern recognition. Digital image processing. Computational geometry ; Segmentation ; Signal processing ; Studies ; Telecommunications and information theory ; Temporal logic ; Visual databases</subject><ispartof>IEEE transactions on image processing, 2002-02, Vol.11 (2), p.135-145</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-6bda90aacc12afcf4b792d5e6978c3ac3f2f63ed1f8a203c68cdf9be9dbd3e903</citedby><cites>FETCH-LOGICAL-c453t-6bda90aacc12afcf4b792d5e6978c3ac3f2f63ed1f8a203c68cdf9be9dbd3e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/982821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/982821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13466882$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Y.</creatorcontrib><creatorcontrib>Ekin, A.</creatorcontrib><creatorcontrib>Tekalp, A.M.</creatorcontrib><creatorcontrib>Mehrotra, R.</creatorcontrib><title>Temporal segmentation of video objects for hierarchical object-based motion description</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units (AU). Likewise, object-to-object interactions are decomposed into a hierarchy of low-level elementary reaction units (ERU) and high-level interaction units (IU). We then propose an algorithm for temporal segmentation of video objects into EMUs, whose dominant motion can be described by a single representative parametric model. The algorithm also computes a representative (dominant) affine model for each EMU. We also provide algorithms for identification of ERUs and for classification of the type of ERUs. Experimental results demonstrate that segmenting the life-span of video objects into EMUS and ERUs facilitates the generation of high-level visual summaries for fast browsing and navigation. At present, the formation of high-level action and interaction units is done interactively. We also provide a set of query-by-example results for low-level EMU retrieval from a database based on similarity of the representative dominant affine models.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Extravehicular activity</subject><subject>Gold</subject><subject>Hierarchies</subject><subject>Humans</subject><subject>Image processing</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Information, signal and communications theory</subject><subject>Layout</subject><subject>Mathematical models</subject><subject>Multimedia databases</subject><subject>Navigation</subject><subject>Object motion</subject><subject>Parametric statistics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Temporal logic</subject><subject>Visual databases</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9rFTEQB_Agiq3Vg1cPshT8ddiaSbL5cZSitlDwUvG4ZJOJzePt5pnsK_jfm-cuFnqopwzMJzMwX0JeAj0DoOaj5mdGM83gETkGI6ClVLDHtaadahUIc0SelbKhFEQH8ik5As2EkGCOyY9rHHcp221T8OeI02znmKYmheY2ekxNGjbo5tKElJubiNlmdxNd5UujHWxB34zp7y-PxeW4O9TPyZNgtwVfrO8J-f7l8_X5RXv17evl-aer1omOz60cvDXUWueA2eCCGJRhvkNplHbcOh5YkBw9BG0Z5U5q54MZ0PjBczSUn5B3y9xdTr_2WOZ-jMXhdmsnTPvSK847bhSXVb59UDKtKDVC_x8q1RmhDvD9gxCkAq4pZ1Dp6T26Sfs81cv0WguuoVOsog8LcjmVkjH0uxxHm3_3QPtD0L3m_RJ0ta_XgfthRH8n12QreLMCW2peIdvJxXLnuJBS68PSV4uLiPivvW75AwSSuEw</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Fu, Y.</creator><creator>Ekin, A.</creator><creator>Tekalp, A.M.</creator><creator>Mehrotra, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20020201</creationdate><title>Temporal segmentation of video objects for hierarchical object-based motion description</title><author>Fu, Y. ; Ekin, A. ; Tekalp, A.M. ; Mehrotra, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-6bda90aacc12afcf4b792d5e6978c3ac3f2f63ed1f8a203c68cdf9be9dbd3e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Extravehicular activity</topic><topic>Gold</topic><topic>Hierarchies</topic><topic>Humans</topic><topic>Image processing</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Information, signal and communications theory</topic><topic>Layout</topic><topic>Mathematical models</topic><topic>Multimedia databases</topic><topic>Navigation</topic><topic>Object motion</topic><topic>Parametric statistics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Temporal logic</topic><topic>Visual databases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Y.</creatorcontrib><creatorcontrib>Ekin, A.</creatorcontrib><creatorcontrib>Tekalp, A.M.</creatorcontrib><creatorcontrib>Mehrotra, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Y.</au><au>Ekin, A.</au><au>Tekalp, A.M.</au><au>Mehrotra, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal segmentation of video objects for hierarchical object-based motion description</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2002-02-01</date><risdate>2002</risdate><volume>11</volume><issue>2</issue><spage>135</spage><epage>145</epage><pages>135-145</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>This paper describes a hierarchical approach for object-based motion description of video in terms of object motions and object-to-object interactions. We present a temporal hierarchy for object motion description, which consists of low-level elementary motion units (EMU) and high-level action units (AU). Likewise, object-to-object interactions are decomposed into a hierarchy of low-level elementary reaction units (ERU) and high-level interaction units (IU). We then propose an algorithm for temporal segmentation of video objects into EMUs, whose dominant motion can be described by a single representative parametric model. The algorithm also computes a representative (dominant) affine model for each EMU. We also provide algorithms for identification of ERUs and for classification of the type of ERUs. Experimental results demonstrate that segmenting the life-span of video objects into EMUS and ERUs facilitates the generation of high-level visual summaries for fast browsing and navigation. At present, the formation of high-level action and interaction units is done interactively. We also provide a set of query-by-example results for low-level EMU retrieval from a database based on similarity of the representative dominant affine models.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18244619</pmid><doi>10.1109/83.982821</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2002-02, Vol.11 (2), p.135-145
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_28700948
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Extravehicular activity
Gold
Hierarchies
Humans
Image processing
Indexing
Information retrieval
Information, signal and communications theory
Layout
Mathematical models
Multimedia databases
Navigation
Object motion
Parametric statistics
Pattern recognition. Digital image processing. Computational geometry
Segmentation
Signal processing
Studies
Telecommunications and information theory
Temporal logic
Visual databases
title Temporal segmentation of video objects for hierarchical object-based motion description
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20segmentation%20of%20video%20objects%20for%20hierarchical%20object-based%20motion%20description&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Fu,%20Y.&rft.date=2002-02-01&rft.volume=11&rft.issue=2&rft.spage=135&rft.epage=145&rft.pages=135-145&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.982821&rft_dat=%3Cproquest_RIE%3E1671380321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884381572&rft_id=info:pmid/18244619&rft_ieee_id=982821&rfr_iscdi=true