Exact and Approximate Solutions for the Gate Matrix Layout Problem

We consider the gate matrix layout problem for VLSI circuits, which is known to be NP-complete. We present an efficient algorithm for determining whether two tracks suffice. For the general problem of minimizing the number of tracks (and, hence, the area) needed, we design an attractive dynamic prog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 1987-01, Vol.6 (1), p.79-84
Hauptverfasser: Deo, N., Krishnamoorthy, M.S., Langston, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 79
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 6
creator Deo, N.
Krishnamoorthy, M.S.
Langston, M.A.
description We consider the gate matrix layout problem for VLSI circuits, which is known to be NP-complete. We present an efficient algorithm for determining whether two tracks suffice. For the general problem of minimizing the number of tracks (and, hence, the area) needed, we design an attractive dynamic programming formulation to guarantee optimality. We also investigate the performance of fast heuristic algorithms published in the literature and demonstrate that there exist families of problem instances for which the ratio of the number of tracks required by these heuristics to the optimal value is unbounded. Moreover, we show that this result holds for any on-line layout algorithm. We additionally prove that, unless P = NP, no polynomial-time layout algorithm can ensure that the number of tracks it requires never exceeds k plus the optimum, for any constant k.
doi_str_mv 10.1109/TCAD.1987.1270248
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28700776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1270248</ieee_id><sourcerecordid>28700776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-58a1bcfcbb93ae3fdb6180c7a5e7290261591f654ed4d08be6d1f27424bda3d73</originalsourceid><addsrcrecordid>eNpFkNFKwzAUhoMoOKcPIN7kQrzrzEnaJr2cc05houC8DmmaYKVrZpLC9va2rOjVgcP3f5zzI3QNZAZAivvNYv44g0LwGVBOaCpO0AQKxpMUMjhFE0K5SAjh5BxdhPBNCKQZLSboYblXOmLVVni-23m3r7cqGvzhmi7Wrg3YOo_jl8GrYf2qoq_3eK0Orov43buyMdtLdGZVE8zVOKfo82m5WTwn67fVy2K-TjSjLCaZUFBqq8uyYMowW5U5CKK5ygynBaE5ZAXYPEtNlVZElCavwFKe0rSsFKs4m6K7o7c_86czIcptHbRpGtUa1wVJBe8f5HkPwhHU3oXgjZU737_lDxKIHNqSQ1tyaEuObfWZ21GuglaN9arVdfgLCsIpA9pjN0esNsb8a0fJL3zXcnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28700776</pqid></control><display><type>article</type><title>Exact and Approximate Solutions for the Gate Matrix Layout Problem</title><source>IEEE Electronic Library (IEL)</source><creator>Deo, N. ; Krishnamoorthy, M.S. ; Langston, M.A.</creator><creatorcontrib>Deo, N. ; Krishnamoorthy, M.S. ; Langston, M.A.</creatorcontrib><description>We consider the gate matrix layout problem for VLSI circuits, which is known to be NP-complete. We present an efficient algorithm for determining whether two tracks suffice. For the general problem of minimizing the number of tracks (and, hence, the area) needed, we design an attractive dynamic programming formulation to guarantee optimality. We also investigate the performance of fast heuristic algorithms published in the literature and demonstrate that there exist families of problem instances for which the ratio of the number of tracks required by these heuristics to the optimal value is unbounded. Moreover, we show that this result holds for any on-line layout algorithm. We additionally prove that, unless P = NP, no polynomial-time layout algorithm can ensure that the number of tracks it requires never exceeds k plus the optimum, for any constant k.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.1987.1270248</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science ; Design automation ; Dynamic programming ; Electronics ; Exact sciences and technology ; Heuristic algorithms ; Integrated circuit interconnections ; Integrated circuits ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Very large scale integration</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1987-01, Vol.6 (1), p.79-84</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-58a1bcfcbb93ae3fdb6180c7a5e7290261591f654ed4d08be6d1f27424bda3d73</citedby><cites>FETCH-LOGICAL-c323t-58a1bcfcbb93ae3fdb6180c7a5e7290261591f654ed4d08be6d1f27424bda3d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1270248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1270248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8072312$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deo, N.</creatorcontrib><creatorcontrib>Krishnamoorthy, M.S.</creatorcontrib><creatorcontrib>Langston, M.A.</creatorcontrib><title>Exact and Approximate Solutions for the Gate Matrix Layout Problem</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>We consider the gate matrix layout problem for VLSI circuits, which is known to be NP-complete. We present an efficient algorithm for determining whether two tracks suffice. For the general problem of minimizing the number of tracks (and, hence, the area) needed, we design an attractive dynamic programming formulation to guarantee optimality. We also investigate the performance of fast heuristic algorithms published in the literature and demonstrate that there exist families of problem instances for which the ratio of the number of tracks required by these heuristics to the optimal value is unbounded. Moreover, we show that this result holds for any on-line layout algorithm. We additionally prove that, unless P = NP, no polynomial-time layout algorithm can ensure that the number of tracks it requires never exceeds k plus the optimum, for any constant k.</description><subject>Applied sciences</subject><subject>Computer science</subject><subject>Design automation</subject><subject>Dynamic programming</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Heuristic algorithms</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Very large scale integration</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><recordid>eNpFkNFKwzAUhoMoOKcPIN7kQrzrzEnaJr2cc05houC8DmmaYKVrZpLC9va2rOjVgcP3f5zzI3QNZAZAivvNYv44g0LwGVBOaCpO0AQKxpMUMjhFE0K5SAjh5BxdhPBNCKQZLSboYblXOmLVVni-23m3r7cqGvzhmi7Wrg3YOo_jl8GrYf2qoq_3eK0Orov43buyMdtLdGZVE8zVOKfo82m5WTwn67fVy2K-TjSjLCaZUFBqq8uyYMowW5U5CKK5ygynBaE5ZAXYPEtNlVZElCavwFKe0rSsFKs4m6K7o7c_86czIcptHbRpGtUa1wVJBe8f5HkPwhHU3oXgjZU737_lDxKIHNqSQ1tyaEuObfWZ21GuglaN9arVdfgLCsIpA9pjN0esNsb8a0fJL3zXcnI</recordid><startdate>198701</startdate><enddate>198701</enddate><creator>Deo, N.</creator><creator>Krishnamoorthy, M.S.</creator><creator>Langston, M.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198701</creationdate><title>Exact and Approximate Solutions for the Gate Matrix Layout Problem</title><author>Deo, N. ; Krishnamoorthy, M.S. ; Langston, M.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-58a1bcfcbb93ae3fdb6180c7a5e7290261591f654ed4d08be6d1f27424bda3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Applied sciences</topic><topic>Computer science</topic><topic>Design automation</topic><topic>Dynamic programming</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Heuristic algorithms</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deo, N.</creatorcontrib><creatorcontrib>Krishnamoorthy, M.S.</creatorcontrib><creatorcontrib>Langston, M.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deo, N.</au><au>Krishnamoorthy, M.S.</au><au>Langston, M.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact and Approximate Solutions for the Gate Matrix Layout Problem</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1987-01</date><risdate>1987</risdate><volume>6</volume><issue>1</issue><spage>79</spage><epage>84</epage><pages>79-84</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>We consider the gate matrix layout problem for VLSI circuits, which is known to be NP-complete. We present an efficient algorithm for determining whether two tracks suffice. For the general problem of minimizing the number of tracks (and, hence, the area) needed, we design an attractive dynamic programming formulation to guarantee optimality. We also investigate the performance of fast heuristic algorithms published in the literature and demonstrate that there exist families of problem instances for which the ratio of the number of tracks required by these heuristics to the optimal value is unbounded. Moreover, we show that this result holds for any on-line layout algorithm. We additionally prove that, unless P = NP, no polynomial-time layout algorithm can ensure that the number of tracks it requires never exceeds k plus the optimum, for any constant k.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCAD.1987.1270248</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1987-01, Vol.6 (1), p.79-84
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_miscellaneous_28700776
source IEEE Electronic Library (IEL)
subjects Applied sciences
Computer science
Design automation
Dynamic programming
Electronics
Exact sciences and technology
Heuristic algorithms
Integrated circuit interconnections
Integrated circuits
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Very large scale integration
title Exact and Approximate Solutions for the Gate Matrix Layout Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20and%20Approximate%20Solutions%20for%20the%20Gate%20Matrix%20Layout%20Problem&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Deo,%20N.&rft.date=1987-01&rft.volume=6&rft.issue=1&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.1987.1270248&rft_dat=%3Cproquest_RIE%3E28700776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28700776&rft_id=info:pmid/&rft_ieee_id=1270248&rfr_iscdi=true